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Finite Difference Models are derived and implemented completely in Python.
The theory and construction of these models can be used in their own right
or may serve as a thorough introduction in groundwater modeling with available
codes especially with MODFLOW, MT3DMS, MODPATH and SEAWAT.
At the end of this course we have built from ground on a powerful 3D steady state
→˓and transient finite difference groundwater code completely in Python functions
→˓and also a powerful 3D particle tracking funcion capable of tracking millions of
→˓particles simultaneously. We also have seen the versatile use of this code. The
→˓finite difference model functions are compatible with MODFLOW and MODPATH. The
→˓only limitation is that the finite difference functions allow just fixed-head
→˓and prescribed flow boundaries. This is to limit clutter and keep the finite-
→˓difference model functions in this course as lean and simple to use as possible,
→˓but the full theory is presented in the first chapter. This limitation is not a
→˓problem in most cases as, it's easy to model so-called general-head boundaries
→˓by setting appropriate conductivities.
For more advanced finite difference modeling and use of more specific packages,
→˓one should use the USGS codes MODFLOW, MODPATH, MT3DMS and SEAWAT directly. A
→˓Matlab interface as developed and used by me and my students for the last 8
→˓years in many projects is available under project mfLab on SourceForge.org. A
→˓Python interface is available under the name PyFlow as developed by the USGS.
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CHAPTER 1

Finite Difference Groundwater Modeling in Python

Previously Matlab-based graduate course at TUDelft

Prof. dr.ir. T.N.Olsthoorn

Dec 31, 2016, 24 May 2016
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Abstract ABSTRACT

This syllabus explains the theory behind numerical groundwater modeling and how to make your own finite dif-
ference groundwater models in Python. The theory is equally well applicable to other computations and computer
language environments like Octave, Scilab and Python. This syllabus aims at providing in-depth insight in numer-
ical modeling of groundwater. It is also base for exercises in the master course CT5440, Geohydrology 2, of the
TU-Delft. Although the structure is kept general, and, therefore applicable also to other times of models like finite
element models and even surface water flow models, its focus is on finite difference models.

During the course, the student will build his or her own finite difference model in Python. The student will see
how flat, axially symmetric, 3D, steady-state and transient models are related. He will also learn how initial and
boundary conditions are introduced. Special attention is given to effective treatment of fixed-head boundaries.
The models are small Python functions, elegant yet powerful, i.e. capable of simulating simple and small as well
as complex and and large groundwater flow problems.The examples serve to demonstrate some things what may
be done as well to verify their accuracy including some pitfalls and how to avoid them.

A real world modeling project is generally preceded by a stage where insight is gained into the answers to be
provided and the structure and processes relevant in the system to be modeled. In a subsequent step, one or more
conceptual models will be made to simulate groundwater behavior under a number of stresses of various types
in terms of heads and flows that force the groundwater in the system. Such stresses are surface water elevations,
recharge, evaporation, pumping and drainage. The questions to be answered in combination with the relevant
complexity of the system also determine the detail of the model mesh to be used, both in space and time. Much
time is generally spent on acquiring input and putting it into the form in which the model can use it. Nowadays,
much information is often directly drawn from databases and already filled GIS systems, including remotely
sensed data such a rain radar. However, one must remain very critical regarding the relevance and correctness
of each data item with respect to the modeling problem at hand. In the end, the modeler is responsible for the
outcomes, not the model or the computer. The results and predictions often stand at the basis of decisions that will
affect livelihoods of people as well as habitats of plants and animals. Lack of time prohibits dealing with with
such extended real-world problems in this course. Insight into the internal behavior of the model and the ability to
verify its outcomes are more relevant to the engineer, and therefore, is the focus of this syllabus.

Fig. 1.1: mesh1

Figure: Different model meshes (grid). Left: a finite element triangular network with the nodes at the element
corners. Middle: a hexagonal finite difference network with nodes in the center of hexagonal cells. Right: a
rectangular finite difference network with nodes in the center of the cells. Area properties are generally specified
for elements in the finite element method and for cells in the finite difference method. Heads and flows are
generally specified at the nodes of the finite element method and at the cell centers of the finite difference method.

Because MODFLOW, the open-source groundwater model of the United States Geological Survey, is world-
wide the most used groundwater model, we’ll stay close to its approaches and terminology so that the
MODFLOW manual will look familiar to the student. MODFLOW is a fully-implicit 3D finite differ-
ence model written in FORTRAN. It can be downloaded together with its manual and source code from
HTTP://water.USGS.gov/ogw/modflow.

The Python environment is far more expressive and, from that point of view more powerful than FORTRAN
meaning we can set-up a powerful MODFLOW-like model in Python within a few tens of lines of code in way

4 Chapter 1. Finite Difference Groundwater Modeling in Python
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we can fully understand; MODFLOW requires thousands of lines of FORTRAN that are difficult to grasp unless
you are a software engineer with expertise in FORTRAN and modeling at the same time. Python has the power to
build a model line by line, interactively, while testing each part of the code immediately on screen, supported by
its very powerful debugger, which points at the location where a problem occurred and allows full inspection of
the circumstances that caused it.

Next to modeling, Python is also a powerful environment to visualize modeling results. Therefore, outside Python
no additional packages are required. Some Python knowledge has, of course, to be acquired during the course.
There exist very good Python books, documentation and tutorials on the web; vertually any question related to
Python can be “googled” to find useful ansers..

1.1. Previously Matlab-based graduate course at TUDelft 5
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CHAPTER 2

Numerical groundwater modeling

We will start with a general description of groundwater modeling and then derive an actual numerical model,
which will finely be converted into a finite difference model by choosing the network and the way the so-called
conductance between model cells are computed. The general overview that follows is valid for all kinds of nu-
merical models. We will follow the general approach as long as possible because it provides the best insight with
the least clutter.

Numerical models divide the space to be modeled into an often large number subspaces, called elements in the
Finite Element Method (FDM) or cells in the Finite Difference Method (FDM). The properties of each element
or cell are specified and generally taken constant within. In the FEM, the heads will be computed at the nodes,
whereas in the FDM they will be computed at the cell centers. In the FEM, flows will be computed between the
nodes, whereas in the FDM they will be computed at the cell faces between adjacent elements. In the FDM the
governing partial differential equation directly discretized on the grid, which takes the form of a water balance
equation of each cell and, hence, for the model as a whole. The FEM requires that the partial differential equation
integrated over each element is satisfied. Solving the model means adjusting all non-fixed nodal or cell heads
such that the water balance over all cells and elements are satisfied simultaneously. The FEM and FDM generally
lead to different grid shapes, see [fig:Different-model-meshes]. The elements associated with the FEM may be
of arbitrary shape, while the shape in the FDM is generally more limited to regular hexagons or rectangular for
instance. However, the newest version of MODFLOW, MODFLOW-USG which stands for “Un Structured Grid”,
brings finite elements and finite differences much closer together by allowing arbitrarily shaped grids, but this is
considered beyond the scope of this syllabus.

To stay close to MODFLOW, we will make a finite difference model with rectangular or block-shaped cells in
which the properties of the subsurface are assumed constant and at the center of which the heads are computed.
The flows are computed at the cell faces, i.e. between adjacent cells.

Although it is straightforward to derive a full 3D finite difference model from the onset, we start with a 2D model
for simplicity, where we divide the subsurface into Ny rows and Nx columns. The cell sizes thus defined may
vary from column to column and from row to row. The thickness in the z-direction may vary if desired.. This
configuration is shown in right-hand picture of figure [fig:Different-model-meshes]. This approach is easy to
understand and easy to implement.

The finial result of any of the possible derivations of the model equations, no matter if they are for a finite element
model or a finite difference model, comes down to a system of equations, each of which is the water balance for
a node or cell of that model. This system of equations represents all nodal water balances. Solving the model is
fulfilling these water balances for all models simultaneously. This is achieved computing the unknown heads in
the nodes/cells that make all nodal/cell water balances match simultaneously.

The FDM is derived by directly writing down equations for the water balance for the nodes; the FEM takes a
more general approach by requiring the governing partial differential equation, which is the water balance on

7
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infinitesimal scale, to be optimally fulfilled within all of the elements. The the FEM is more complicated in
deriving its equations and setting up the model, but the bonus is more flexibility in element shapes.

In the end, any numerical groundwater model yields a set of water balances, one for each node. This is true for the
FEM, the FDM as it is for any surface water model. In all such models the the space between nodes is replaced
by links model types differ only in the way how this is done. In any case, the number of equations, as well as
the number of unknowns, equals the number of non-fixed nodes, equals the number of water balances. A finite
difference model of 300 rows, 300 columns and 10 layers thus has 0.9 million equations and the same order of
unknowns.

Figure [fig:Model-node] shows some of the nodes (or cell centers) of an arbitrary finite element or finite difference
model. For one node or cell, with index number i, the adjacent nodes are shown to which it is directly connected,
that is, they share one element edge in the FEM or one cell face in the FDM (or one canal or river section in a
surface water model). The only difference between these types of models is the way in which the connections
are computed. So most of the discussion about modeling and model construction can be done without bothering
about these specific details, which is the line followed in this syllabus, because it is most general. For the sake of
simplicity whenever the word node is used it can be read as a node in the FEM or equally as a cell center in the
FDM.

Figure: A model node with its surrounding connected neighbors

Just as general is, that the flow 𝑄𝑖𝑗 from node i in the direction of adjacent node j with heads 𝜑𝑖 and 𝜑𝑗 respectively,
is described by

𝑄𝑖𝑗 = 𝐶𝑖𝑗 (𝜑𝑖 − 𝜑𝑗)

=
1

𝑅𝑖𝑗
(𝜑𝑖 − 𝜑𝑗)

𝐶𝑖𝑗 [(L3/T)/L]} or [L2/T] is called the “conductance” and its reciprocal is the “resistance” [L/(𝐿3/T)]. The
conductance comprises the properties of the area between the connected nodes and their distance. In case the
conductance is not constant, as is the case in a surface water model or in a groundwater model with a water table
in which the transmissivity is not known a priori, this flow must be computed iteratively.

8 Chapter 2. Numerical groundwater modeling
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The physical meaning of the conductance is obvious: it is the flow of water [𝐿3/𝑇 ] from node 𝑖 to node 𝑗 in case
the head difference 𝜑𝑖 − 𝜑𝑗 [L] equals 1 [L]. The actual dimension depends on the system used, i.g meters and
days or feet and hours.

The steady state water balance of an arbitrary node i in the numerical model is described by the following equation

𝑣

𝑗=𝑁∑︁
𝑗=𝑖, 𝑗 ̸=𝑖

𝑄𝑖𝑗 = 𝑄𝑖

Where 𝑄𝑖 is the inflow to the node or cell from the outside world and the left hand side is the combined outflow
from the node or cell to all its neighbors. Hence inflow from the outside world into the model is taken positive.
The left -hand side thus represents the flow from node i through the model towards its connected neighbors. We
will deal with transient models later.

The nodal inflow 𝑄𝑖, is the sum of all inflows of water from the outside world into node 𝑖 minus the extractions
of water from node 𝑖 to the the outside world. Therefore, 𝑄𝑖 combines recharge, injections, extractions, leakage,
drainage and so on, summed over and integrated over the space attributed to the node (FEM) or cell (FDM).

Using conductances, the nodal water balance becomes:

𝑁∑︁
𝑗=1, 𝑗 ̸=𝑖

𝐶𝑖𝑗 (𝜑𝑖 − 𝜑𝑗) = 𝑄𝑖

Notice that 𝑖 and 𝑗 run over all the nodes of the model. This equations expresses that node 𝑖 may be connected
to any or all other nodes of the model no matter how far apart. Of course, in an ordinary model each node is
only connected to its direct neighbors. Therefore, most of the conductances 𝐶𝑖𝑗 are zero. In case a node has n
connected neighbors, only 𝑛 + 1 of these conductances are non-zero for each node. Therefore, of a model with
𝑁 nodes has 𝑁 ×𝑁 possible connections of which 𝑁 with node 𝑖. These connections, and hence, conductances,
potentially fill a matrix of 𝑁 rows and 𝑁 columns. Notice that a finite difference model with a grid consisting
of 𝑁𝑥 rows by 𝑁𝑦 columns and 𝑁𝑧 layers, ha 𝑁 = 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 cells, and, therefore, this 𝑁 × 𝑁 array can
easily exceed the memory capacity of any available computer. For instance, a model having “only” 300 rows,
300 columns and 10 layers has 𝑁 = 0.9 million cells and hence the 𝑁 × 𝑁 array of possible conductances has
𝑁2 = 0.81 × 1012 entries. With, with 4 bytes per value to be stored this would require a computer memory of
3 × 1012 bytes or about 3 terabyte. This is huge for any internal computer memory. However, if we only store the
non-zero values, then the maximum number of conductance to be stored it tremendously reduced. In a 3D finite
difference model the maximum number of connected neighbors of any cell is 7. This implies that the number of
non-zero values can be no more than 7×𝑁 , i.e. 7×4×0.81×106 ≈ 30 Mb in the example model. This memory
storage peanuts on even a modern PC with for instance 8 GB internal memory. In fact the array of conductances
is extremely sparse. In this case the fraction of non-zero values is at most 7 ×𝑁/𝑁2 = 7/𝑁 ≈ 10−5 or 0.001%..
We will therefore make use of this sparsety when storing the system matrix and solving the model, because, if we
do not do this, our computer could not even handle a small size model!

Writing out the above balance equation yields

−𝐶𝑖1𝜑1 − 𝐶𝑖2𝜑2 − . . . +

⎛⎝ 𝑗=𝑁∑︁
𝑗=𝑖, 𝑗 ̸=𝑖

𝐶𝑖𝑗

⎞⎠𝜑𝑖𝑖 . . .− 𝐶𝑖, 𝑁−1𝜑𝑁−1 − 𝐶𝑖, 𝑁𝜑𝑁 = 𝑄𝑖

or

−𝐶𝑖1𝜑1 − 𝐶𝑖2𝜑2 − . . . + 𝐶𝑖𝑖𝜑𝑖𝑖 . . .− 𝐶𝑖, 𝑁−1𝜑𝑁−1 − 𝐶𝑖, 𝑁𝜑𝑁 = 𝑄𝑖

where

𝐶𝑖𝑖 = −
𝑁∑︁

𝑗=1,𝑗 ̸=𝑖

𝐶𝑖𝑗

The physical meaning of diagonal matrix element 𝐶𝑖𝑗 is the amount of water flowing from node i to all its adjacent
nodes if the head in node i is exactly 1 m higher than that of its neighbors.

9
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Equation [eq:nodal-water-balance-with-conductances] can be written compactly as follows:

𝑁∑︁
𝑗=1

𝐶𝑖𝑗𝜑𝑗 = 𝑄𝑖

where the sum taken over all matrix elements in a row equals zero

𝑁∑︁
𝑗=1

𝐶𝑖𝑗 = 0

which means that the flow from node 𝑖 to node 𝑗 with 𝜑𝑖 − 𝜑𝑗 = 1 equals the flow from node 𝑗 to node 𝑖 when
𝜑𝑗 − 𝜑𝑖 = 1. Under special circumstances, this may not be true, in which case the model is non-linear and needs
to be solved iteratively.

Equation [eq:system-equation-as-sum] is equivalent to the matrix equation

CΦ = Q

With C the square coefficient or system matrix, which holds the conductances −𝐶𝑖𝑗 , 𝑖 ̸= 𝑗 and 𝐶𝑖𝑖 as defined
in equation [eq:Cii]. In a 3D finite difference model, both 𝑖 and 𝑗 may take values from 1 to 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 .
Therefore, the size of C in such a model is 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 rows by 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 columns, which potentially is
huge. Φ is the column vector of still unknown heads at the nodes or cell centers (its size is 1 ×𝑁𝑥𝑁𝑦𝑁𝑧) and Q
the column vector net nodal or cell inflows from the outside world, which has the same size as Φ..

To fill the system matrix, we have to compute the conductances between all connected nodes and put their value
into the matrix at location specified by 𝑖 and 𝑗. That is, −𝐶𝑖𝑗 goes to row 𝑖 and column 𝑗, 𝑖 ̸= 𝑗. When done, the
coefficients for the diagonal, 𝐶𝑖𝑖, are computed by taking the negative sum of the no-diagonal elements in line 𝑖
of the matrix, which representing node 𝑖.

Before deriving the expressions for the conductances, and hence, the how to compute the elements in the system
matrix, we consider the model’s boundary conditions.

To prevent having to deal with the zeros in over 99% of the system matrix, Python’s scipy.sparse module
offers sparse matrices and sparse matrix functions. These sparse matrices work exactly like ordinary matrices
but they store only the non-zero elements. Scipy.sparse also offers sparse matrix functions that know how
to handle sparse matrices and how to deal only with the non-zeros elements. It is the sparse matrices that make
computing of large numerical models feasible on a PC.

Boundary conditions connect the model to the outside world, by linking nodes to heads outside the model or by
specifying inflows and extractions, which can be of any type including wells, drainage, recharge and evaporation.
Model nodes can also be linked to an outside head through a conductance 𝐶 or a resistance 𝑅 = 1/𝐶. Such lines
turn out to be a mixture of a fixed head and a fix flow boundary.

Exchange between model nodes and the outside world through flows is quite trivial: all net inflows to (negative if
outflows from) the outside world, whatever their type, are directly added to the the inflow at the right-hand size of
equation [eq:Model-equation]; i.e. all given inflows minus outflows to node 𝑖 are added to 𝑄𝑖 in vector Q.

The other types of boundary condition deal with heads, such that the flow between the outside world and the model
node is driven by the head difference, and, therefore, is a priori unknown. We treat this in a general way, i.e. by
writing out how fixed heads in the outside world connect to nodes of the model through a conductance 𝐶. Heads
that are fixed directly at a node of the model, i.e. fixed heads, become a limiting case in which the conductance
approaches ∞ or the resistance approaches zero. These heads can and will be handled separately in a way that
speeds up the model and stabilizes it.

Consider flow 𝑄𝑒𝑥, 𝑖 into node 𝑖 from from a water body in the external to the model. Let the head in that water
body be fixed and equal to ℎ𝑖 while the head 𝜑𝑖 in the model at node 𝑖 is unknown. This flow through the
conductance 𝐶𝑖 between node and outside world equals

𝑄𝑒𝑥, 𝑖 = 𝐶𝑖 (ℎ𝑖 − 𝜑𝑖)

This flow can be simply added to the right-hand side of the model equation to give

𝑁∑︁
𝑗=𝑖, 𝑗 ̸=𝑖

−𝐶𝑖𝑗𝜑𝑗 + 𝐶𝑖𝑖𝜑𝑖 = 𝑄𝑖 + 𝐶𝑖 (ℎ𝑖 − 𝜑𝑖)
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in which the diagonal 𝐶𝑖𝑖 was taken out of the matrix for clarity (notice the sum indices).

Equation [eq:Qex] represents a net inward flow , just like the given inflow 𝑄𝑖.

This way, each model node may be connected to the outside world having arbitrary fixed heads (lakes, rivers and
so on).

The constant part , 𝐶𝑖ℎ𝑖, works exactly like a fixed inflow. The variable part, 𝐶𝑖𝜑𝑖, may be put to the left-hand
side of the equation to yield

𝑁∑︁
𝑗=𝑖, 𝑗 ̸=𝑖

−𝐶𝑖𝑗𝜑𝑗 +
(︁
𝐶𝑖𝑖 + 𝐶𝑖

)︁
𝜑𝑖 = 𝑄𝑖 + 𝐶𝑖ℎ𝑖

This boils down to adding 𝐶𝑖 to the diagonal matrix entry, 𝐶𝑖𝑖 → 𝐶𝑖𝑖 + 𝐶𝑖.

In matrix form for direct in use in Python, using the subscript ghb to indicate general head boundary(︁
C + 𝑑𝑖𝑎𝑔

(︁
Ĉghb

)︁)︁
Φ = Q + Ĉghb · h

Where 𝑑𝑖𝑎𝑔
(︁
Ĉg

)︁
is an 𝑁×𝑁 diagonal matrix with the elements 𝐶𝑖. This is indeed equivalent to adding 𝐶𝑖 to the

diagonal elements 𝐶𝑖𝑖. Notice that 𝐶𝑖 ̸= 0 only where general head boundaries exist, but they can be associated
with any cell in the model.

The boundary conditions explained in this section are so-called general head boundaries. In Modflow jargon they
are abbreviated to GHB. Truly fixed-head boundaries are dealt with further down.

Modflow has two other variants of these general head boundaries: called drains (abbreviated to DRN) and rivers
(abbreviated to RIV). DRNs differ form GHBs in that they only discharge when the head in the model is above
the user-specified drain elevation. RIVs differ from GHBs in that the head difference that drives the flow from the
river to the connected model node is limited to the water depth of the river; if the head in the model node declines
below the river bottom, the river bottom is used instead of the head as explained below.

Drains and rivers thus make the model non-linear as they imply a switch, i.e. cut off or curtail flow depending on
the head in the model. Such non-linearities are dealt with using iterative matrix solvers, so that the flows can be
updated during the solution process. We will ignore iterative solvers in Python even when the model is non-linear
and use a standard (sparse) matrix solver repeatedly when needed, until convergence is achieved. This mostly
works faster.

As said above, drains work as general head boundaries as long as the head is above the drain elevation. When the
head declines to below the local drain elevation, the flow is set to zero. For the DRN cells we thus need to specify
a drain elevation, i.e. a vector hdrn next to the drain conductances Ĉdrn. Of course, 𝐶drn,i ̸= 0 only for cells
that have drains connected.

The switch may be implemented as a using Boolean vector bdrn which contains true (or 1) for all cells where
Φ > hdrn and false (0) otherwise:

bdrn = (Φ > hdrn)

Hence, the drains are implemented as follows:(︁
C + 𝑑𝑖𝑎𝑔

(︁
Ĉdrn · bdrn

)︁)︁
Φ = Q + Ĉdrn · bdrn · hdrn

Notice that in Python, a Boolean true becomes 1 if used in arithmetic operations and false then becomes zero. The
Boolean vector in the above equation should therefore be read as a vector of ones an zeros.

River boundaries are also general head boundaries as long as the head remains above the bottom of the river. When
it falls below the river bottom, ℎ𝐵 , the infiltration is assumed to pass through the unsaturated zone without suction
from the fallen head. So, for an arbitrary river node:

𝑄𝑟𝑖𝑣 = 𝐶𝑅 (ℎ𝑟𝑖𝑣 − 𝜑) , 𝜑 > ℎ𝑏𝑜𝑡

𝑄𝑟𝑖𝑣 = 𝐶𝑟𝑖𝑣 (ℎ𝑟𝑖𝑣 − ℎ𝐵) , 𝜑 ≤ ℎ𝑏𝑜𝑡
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writing 𝑏𝑟𝑖𝑣 = 𝜑 > ℎ𝑏𝑜𝑡 and ¬𝑏𝑟𝑖𝑣 = ¬ (𝜑 > ℎ𝑏𝑜𝑡) = 𝜑 ≤ ℎ𝑏𝑜𝑡

or

𝑄𝑟𝑖𝑣 = 𝐶𝑟𝑖𝑣 (ℎ𝑟𝑖𝑣 − 𝜑) 𝑏𝑟𝑖𝑣 + 𝐶𝑟𝑖𝑣 (ℎ𝑟𝑖𝑣 − ℎ𝑏𝑜𝑡)¬𝑏𝑟𝑖𝑣

In Python where ¬𝑏𝑟𝑖𝑣 = 1 − 𝑏𝑟𝑖𝑣 this reduces to

𝑄𝑟𝑖𝑣 = 𝐶𝑟𝑖𝑣 (ℎ𝑟𝑖𝑣 − 𝜑) 𝑏𝑟𝑖𝑣 + 𝐶𝑟𝑖𝑣 (ℎ𝑟𝑖𝑣 − ℎ𝑟𝑖𝑣) − 𝐶𝑟𝑖𝑣 (ℎ𝑟𝑖𝑣 − ℎ𝑏𝑜𝑡) 𝑏𝑟𝑖𝑣

= 𝐶𝑟𝑖𝑣 (ℎ𝑟𝑖𝑣 − ℎ𝑏𝑜𝑡) + 𝐶𝑟𝑖𝑣 (ℎ𝑏𝑜𝑡 − 𝜑) 𝑏𝑟𝑖𝑣

Therefore MODFLOW-type rivers can be implemented as follows(︁
C + 𝑑𝑖𝑎𝑔

(︁
Ĉriv · briv

)︁)︁
Φ = Q + Ĉriv (hriv − (1 − briv)hbot)

Combining the three previous sections, the model equation with all general head, drain and river boundaries then
becomes: (︁

C + 𝑑𝑖𝑎𝑔
(︁
Ĉghb + Ĉdrn · bdrn + ^Criv · briv

)︁)︁
Φ = 𝑅𝐻𝑆

𝑅𝐻𝑆 = Q + Ĉghb · hghb + Ĉdrn·hdrn · bdrn + Ĉriv · (hriv − (1 − briv)h𝑏𝑜𝑡)

Equation [eq:system-equation-head-boundaries] specifies the complete model from which the heads may be solved
directly in Python using the appropriate function (see actual Python code in subsequent chapters).

Combining for simplicity the contribution from the different head boundary conditions under :raw-
latex:‘\mathbf{\hat{C}}‘ and h, different, the solution of equation [eq:system-equation-head-boundaries] sim-
plifies to:

Φ =
(︁
C + 𝑑𝑖𝑎𝑔

(︁
Ĉ
)︁)︁

∖
(︁
Q + Ĉ · h

)︁
where the backslash is “Matlab language” means: solve this set of equations for the unknowns at the left, but don’t
necessarily invert the matrix left of the \ for computation efficiency reasons.

The column vector Ĉ · h contains therefore the elements 𝑐𝑖ℎ𝑖.

The latter system equation ([eq:system-equation]), which solves for the unknown heads Φ and includes the bound-
ary conditions, represents the complete model .

Once the heads are computed by [eq:system-equation], we may calculate the net inflow of all the nodes or nodes
by the matrix multiplication [eq:Model-equation], which must be zero when summed over the entire model∑︁

Q𝑖𝑛 = 0

This is an easy check of correct implementation.

We may compute the inflow from all external fixed-head sources (negative if the flow is outward) from

Q𝐹𝐻 = CΦ −Q

Above we used so-called general-head boundaries, i.e. fixed heads in the outside world that connect with the
model through a conductance. The general head boundaries were extended to specific forms, i.e. drains and river
boundaries. However, most models also define fixed-head boundaries as nodes in which the heads are directly
prescribed and need not to be computed at all..

One way to deal with fixed-head boundaries is through the use of a very large conductance in combination with
general head boundaries, i.e. 𝐶𝑖 → ∞, i.e. say 𝐶𝑖 = Γ = 1010 or so) with Γ here representing an infinite value
of 𝐶𝑖.

Then for the fixed-head nodes we have

𝑁∑︁
𝑗=1, 𝑗 ̸=𝑖

−𝐶𝑖𝑗𝜑𝑗 + (𝐶𝑖𝑖 + Γ)𝜑𝑖 = 𝑄𝑖 + Γℎ𝑖
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Because Γ → ∞ and so Γ ≫ |𝐶𝑖𝑖|, then by dividing the left and right hand side by Γ, yields

𝜑𝑖 = ℎ𝑖

This may be all what is needed to fix heads in given nodes. It works well in Python. However, it is inefficiency and
the system matrix may become unstable leading to very high condition values with the risk of inaccurate results.
But normally no difficulties occur and the results are very accurate. Below we show a better, far more efficient
and surely accurate method.

Differentiating between active and inactive cells is common in finite difference modeling with regular grids. In-
active cells represent a part of the grid that does not take part of the model. It might represent bedrock with no
groundwater at all. The active cells are the cells for which the heads are unknown and must be computed. Then
there is a third category of cells, namely the cells with a fixed head. To differentiate between these three categories
of cells, MODFLOW uses its IBOUND array as a three-way Boolean. The IBOUND array has the same shape
and number of cells as the grid and contains integers (whole numbers). It is interpreted as follows:

Cells with a value > 0 are active cells with unknown heads.

Cells with a value equal to zero are inactive and therefore excluded from the model

Cells with a value < 0 have a fixed head. The head values are taken from the array with STRTHD values.

The IBOUND array may be just just as a 3-way Boolean, but often also as a zone-array indicating the position
of certain features. This is because from the point of view of the model on only thing that matters is whether the
IBOUND value of a cell is less than, equal to or larger than zero.

In Python obtaining a Boolean array of active cells, inactive cells or fixed head cell can be done as follows,
where we use the ravel() method to flatten the 3D shape of the IBOUND array into a long vector: Iact
= IBOUND.ravel()>0 Iinact= IBOUND.ravel()==0 Ifh = IBOUND.ravel()<0 These three Boolean arrays have
the same possibly 3D shape as the IBOUND array and, therefore as the grid of the model. We can make
it column vectors in the way we will use them Iact = IBOUND.ravel()>0 Iinact = IBOUND.ravel()==0 Ifh =
IBOUND.revel()<0 If we don’t wand a Boolean vector but rather the actual indices of the cells concerned, place
find() around the previous expressions: Iac = where(IBOUND.ravel()>0) Iinact= where(IBOUND.ravel()==0) Ifh
= where(IBOUND.ravel()<0) Which shows how flexible Python is.

Rather than using an arbitrary large conductance to implement fixed heads as explained above, we may directly
implement them in a way that improves the condition of the matrix and reduces the computing time, because the
fixed heads nodes do not have to be computed at all; the more cells with fixed heads, the smaller the computational
effort and the faster the model will be.

Let the model be described by the system equation as before, and let us ignore general head, drain and river
boundaries here just for simplicity and reduce the length of writing in the derivation:

CΦ = Q

First of all, we may kick out the inactive cells, which could substantially reduce the size of the model. The only
cells relevant to our model are the union of the fixed head and the active cells, which is the set of cells that are
not inactive. Let Iinact be the set of inactive cells, i.e. a vector of Boolean values indicating such cells, let further
Ifh be the vector of Booleans indicating fixed-head cells and let Iact be the vector of Booleans that indicates the
active cells, then using :raw-latex:‘neg ‘to mean “not” we have:

¬Iinact = Ifh∩Iact

where ¬Iinact is the vector of booleans in our model that matter, i.e. where groundwater exists.

Hence the reduced model without inactive cells is

C (¬Iinact,¬Iinact) Φ (¬Iinact) = 𝑄 (¬Iinact)

This expresses that we use only those rows and columns of the system matrix and vectors that represent either
fixed head or active cells.

Then C (¬Iinact, Ifh) represents all the columns of the system matrix in that will be multiplied by a fixed head,
i.e. the heads represented by the vector Φ (Ifh). Hence, the matrix-vector multiplication C (¬Iinact, Ifh) Φ (Ifh)
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yields a constant vector for all relevant cells, which may be placed directly at the right-hand side of the matrix
equation, leaving the remaining columns C (¬Iinact, Iact) untouched at the left hand side. The system equation
then becomes:

C (¬Iinact, Iact) Φ (Iact) = Q (Iact) −C (¬Iinact, Ifh) · Φ (Ifh)

Because we only have to compute the heads at nodes indexed by Iact, we get a further reduced system of equations.
The rows corresponding to the fixed heads may also be eliminated as the fixed heads need not to be computed at
all. This results in the following matrix equation:

C (Iact, Iact) Φ (Iact) = Q (Iact) −C (Iact, Ifh) · Φ (Ifh)

Hence, the right-hand side contains the constants and the left-hand side the remaining equations (rows and
columns) with the unknown heads. Again, the result is a smaller model that is computationally faster and also
better conditioned the the original. The more cells have a fixed head, the faster the model will be.

We use Matlab’s backslash (\) operator (called left division) here for convenience of expressing in this math that
this this set of linear equations can be directly solved (see acutual python code in subsequent chapters):

Φ (Iact) = C (Iact, Iact) ∖ (Q (Iact) −C (Iact, Ifh) · Φ (Ifh))

and where

Φ (Ifh)

are known beforehand.

With all heads now known, we can compute the nodal inflow of all nodes, including the fixed-head nodes by

Q (¬Iinact) = C (¬Iinact,¬Iinact) Φ (¬Iinact)

This leaves the flows in the inactive cells untouched; they remain whatever they were.

In Python code this would look like the following snippet Phi = STRTHD.ravel(); Q = zeros(IBOUND.shape);
Iact = IBOUND.ravel()>0; Iinact = IBOUnD.ravel()==0; Ifh = IBOUND.ravel()<0; Phi[Iact] = C[Iact][Iact]
Q[Iact]-C[Iact][Ifh]*Phi[Ifh] Q[!Iinact]= C[!Iinact][!Iinact]*Phi[!Iinact]

In [ ]:
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CHAPTER 3

Finite difference modeling

Prof. dr.ir.T.N.Olsthoorn

Heemstede, Sept. 2016, 24 May 2017

Approach

In this chapter we set-up a 3D steady-state finite difference model from scratch. We do this by computing a
numerical groundwater problem step by step, by hand, using finite difference, building up the pieces of the model,
which we will assemble in the next chapter.

Setup of the model by specifying its dimensions

The 3D steady state FDM will be based on a regular grid consisting of rows an columns and layers. The column
widths and the row heigts are constant on a per column and per row basis, but the layer thickness can vary on a
cell by cell basis. The grid of a full 3D model will thus be specified in general by a vector of x cell boundary
coordinates, a vector y row boundary coordinates and a full 3D array of cell top and bottom coordinates.

Notice that the arrays are interpreted as [z, y, x] or [layer row col]. This is a convenience in Python where when
Phi is a 3D array of the shape of the grid [Nz, Ny, Nz] we have

Phi[k].shape is [Ny, Nx], the entire layer number i. Phi[k][j] = Nx, the entire row j of layer i. Phi[k][j][i] = the
head in cell [k, j, i] which is the same as Phi[k, j, i]

In [1]: import numpy as np

# specify a rectangular grid
x = np.arange(-1000., 1000., 25.)
y = np.arange(-1000., 1000., 25.) # backward, i.e. first row grid line has highest y
z = np.arange(-100., 0., 20.) # backward, i.e. from top to bottom

From these coordinates we obtain the number of cells along each axis and the cell sizes and

In [3]: # as well as the number of cells along the three axes
Nx = len(x)-1
Ny = len(y)-1
Nz = len(z)-1
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sz = (Nz,Ny,Nx) # the shape of the model
Nod = np.prod(sz) # total number of cells in the model

# from this we have the width of columns, rows and layers
dx = np.diff(x).reshape(1, 1, Nx)
dy = np.diff(y).reshape(1, Ny,1)
dz = np.abs(np.diff(z)).reshape(Nz, 1,1)

IBOUND array - telling which cells are active and which have a pre-
scribed head

Let’s first specify which of the cells have their head prescrided and which cells are inactive. We have to tackle
inactive cells early to make sure their conductance is made zero (in case there conductivities might be specified as
non-zeros).

We do that my means of a so-called boundary array IBOUND (MODFLOW terminology), which is an integer
array of the shape of the model grid that tells which cells have a prescribed head, which cells are inactive (i.e.
which cells does not take part of the computation, such as cells that represent impermeable rock) and for which
cells the head should be computed.

• IBOUND > 0, means heads will be computed

• IBOUND == 0, means cells are inactive

• IBOUND <0 , means heads prescribed

In this particular example we specify that the vertical zx plane at the last row of the model will have prescribed
heads equal to zero.

In [7]: IBOUND = np.ones(sz)
IBOUND[:,-1,:] = -1 # last row of model heads are prescribed
IBOUND[:, 40:45, 20:70]=0 # these cells are inactive

This boundary array makes it easy telling which cells cells are active (head computed), inactive, and fixed-head.

In [8]: active = (IBOUND>0).reshape(Nod) # active is now a vector of booleans of length Nod
inact = (IBOUND==0).reshape(Nod) # dito for inact
fxhd = (IBOUND<0).reshape(Nod) # dito for fxhd

Cell conductancies: defining the ease of flow between adjacent
cells

The first thing to define based on the properties of the cells is the flow resistance of each cell in the 3 grid directions,
x, y and z. For that we need the cell sizes from the coordinates and the hydraulic conductivities in the x, y and z
direction. The latter are given as full 3D arrays kx, ky, kz whose shapes correspond to that of the model mesh.

In [9]: k = 10.0 # m/d uniform conductivity
kx = k * np.ones(sz) # [L/T] 3D kx array
ky = k * np.ones(sz) # [L/T] 3D ky array with same values as kx
kz = k * np.ones(sz) # [L/T] 3D kz array with same values as kx

The flow resistances for each cell is the head loss across opposite cell faces due to a unit flux through the cell
along the axis perperndicular to them. These resistances are cell properties that can immediately be computed for
the entire grid of the model. Because we always need the resistance between the cell center and its outer faces, we
use the factor 0.5 (flow over half the lenght of the cell in each direction)

In [10]: # half cell flow resistances
Rx = 0.5 * dx / (dy * dz) / kx # [T/L2], flow resistance half cell in x-direction
Ry = 0.5 * dy / (dz * dx) / ky # same in y-direction
Rz = 0.5 * dz / (dx * dy) / kz # same in z-direction
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Make inactive cells inactive by setting their resistance to np.Inf (infinite):

In [11]: Rx = Rx.reshape(Nod,); Rx[inact] = np.Inf; Rx=Rx.reshape(sz)
Ry = Ry.reshape(Nod,); Ry[inact] = np.Inf; Ry=Ry.reshape(sz)
Rz = Rz.reshape(Nod,); Rz[inact] = np.Inf; Rz=Rz.reshape(sz)

From this we compute the conductance between each pair of adjacent cells across their connecting cell face. The
conductance is just the reverse of the resistance of the two connected half cells. This resistance is the sum of the
resistances of the two connected half cells because these resistances are placed in series with respect to the flow.

In [12]: # conductances between adjacent cells
Cx = 1 / (Rx[:, :, :-1] + Rx[:, :,1:]) # [L2/T] in x-direction
Cy = 1 / (Ry[:, :-1,:] + Ry[:, 1:,:]) # idem in y-direction
Cz = 1 / (Rz[:-1,:,:] + Rz[1:,:,:]) # idem in z-direction

Setting up the system matrix - set of water balance equations

The system matrix has size of (Nod, Nod) allowing a connection between each pair of cells. Of course only cells
that share their cell face are connected in reality. In a 3D model this means that each cell is connected to its 6
neighbors instead of to all other cells in the model. This means that most of the matrix entries will be zero.

To be able to indentify adjacent cells we generate cell numbers in an array that has the size of the model grid:

In [14]: NOD = np.arange(Nod).reshape(sz) # this is a full 3D array of node numbers (cell numbers)

With this array it’s easy to identify adjacent cells by their cell number. Thus we generate arrays with the cel
numbers of right hand neigbor of the cells (east neighbor), the left hand neighbor (the west neigbor), the north
neighbor, south neighbor, the top neighbor and the bottom neighbor as follows

In [15]: IE = NOD[:, :, 1:] # numbers of the eastern neighbors of each cell
IW = NOD[:, :, :-1] # same western neighbors
IN = NOD[:, :-1,:] # same northern neighbors
IS = NOD[:, 1:,:] # southern neighbors
IT = NOD[:-1,:,:] # top neighbors
IB = NOD[1:,:,:] # bottom neighbors

Notice that the shape of the IE and IW is the same as that of Cx, the size of IN and IS is the same as that of Cy
and the size of IT and IB is the same as that of Cx.

To put the conductances into the system matrix we need their row and column indices together with their value,
so that we can say a[j,i] = value. Because we have the numbers of adjacent cells in the arrays IE, IW etc, we
can immediately place all the system matrix coefficiencts at the place into a sparse matrix.

In [16]: import scipy.sparse as sp

R = lambda x : x.ravel() # define short hand for x.ravel()

# notice the call signature:
# csc_matrix( (data, (row_index, col_index) ), (M,N)); This is a tuple within tuple.
A = sp.csc_matrix(( np.concatenate(( R(Cx), R(Cx), R(Cy), R(Cy), R(Cz), R(Cz)) ),\

(np.concatenate(( R(IE), R(IW), R(IN), R(IS), R(IB), R(IT)) ),\
np.concatenate(( R(IW), R(IE), R(IS), R(IN), R(IT), R(IB)) ),\

)),(Nod,Nod))

We now have to define the diagonal elements of the system matrix A, i.e. the values a[i,i] for i=[0:Nod].

These are just the negative sum of the row coefficients. Hence we sum A over the second axis (axis=1) to get
them in a [Nod,1] sized vector. (Notice stat sparace matrix derived vectors keep their orientation, contrary to
vectors obained from numpy arrays, which produce dimensionless vectors).

Generate the diagonal values:

In [17]: # to use the vector of diagonal values int a call of sp.diags() we need to have it aa a
# standard nondimensional numpy vector.
# To get this:
# - first turn the matrix obtained by A.sum(axis=1) into a np.array by np.array( .. )

3.5. Setting up the system matrix - set of water balance equations 17
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# - then take the whole column to loose the array orientation (to get a dimensionless numpy vector)
adiag = np.array(-A.sum(axis=1))[:,0]

Then generate a diagonal array from these values, that we can add it to A, to complete A.

In [18]: Adiag = sp.diags(adiag)

More complex alternative: Generate diagonal array by calling the csr_matrix constructor:

Adiag = sp.csr_matrix((adiag,(np.arange(Nod),np.arange(Nod))),(Nod,Nod))

Boundary conditions

For this chapter we only use fixed flow and fixed head boundary conditions.

Fixed flows

Fixed flow boundary conditions are specified by an 3D array of the size of the grid. Each values specifies the
inflow for the corresponding cell (injections are positive). Cells without a specified flow are, in fact, cells where
the specified flow is zero. Hence the fixed-flows array is a full 3D array with flow values that are zero where no
flow enters or leaves the cells and have non-zero values elsewhere.

For this example, we specify a single extraction of Q=-1200 m3/d in cell [30,25,2]:

In [19]: FQ = np.zeros(sz) # all flows zero. Note sz is the shape of the model grid
FQ[2, 30, 25] = -1200 # [m3/d] extraction in this cell

The righ-hand size of the matrix equation to be solved, the vector RHS, contains the flows. So we can generate it
by assignment of FQ and converting it to a numpy vector

In [20]: RHS = FQ.reshape(Nod)

See further down how we use RHS for only the active and non-fixed head rows.

The next step is to add fixed head boundary conditions.

Fixed heads

Fixed heads are known heads. This implies that in the set of equations that represent the model, i.e

𝐴× 𝑃ℎ𝑖 = 𝑅𝐻𝑆

Some of the Phis are prescribed and should not be computed as defined by IBOUND and contained in the boolean
vectors active, fxhd and inact specified and computed above.

Now that we know which cell have fixed heads, we can multiply out these heads with the corresponding columns
of the system matrix, which yields a vector of constant values with dimension flow [m3/d] that can be added to
the fixed flow vector in the RHS vector. The RHS vector is now the sum of the FQ and the contribution from the
fixed heads.

Notice that the fixed heads will be obtained from the given array HI of the initial heads, where the head in the
cells where IBOUND>0 correspond with the fixed heads.

In [21]: HI = np.zeros(sz)

We reshape FQ and HI to a column vector to allow matrix multiplication

In [22]: RHS = FQ.reshape(Nod,1) - A[:,fxhd].dot(HI.reshape(Nod,1)[fxhd])

We have now the complete RHS of the matrix equation to solve:

𝐴× 𝑃ℎ𝑖 = 𝑅𝐻𝑆
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Solving the matrix equation for the unknown heads

We use the sparse matrix solver in module scipy.sparse.linalg to compute the unknown heads.

In [23]: from scipy.sparse.linalg import spsolve # import with from to use its short name

Of course we only need the active rows and columns of A and the active rows from RHS.

But first allocate a full-fledged vector of heads to store the result.

In [24]: Phi = HI.flatten()

Then compute the unknown heads (i.e. the active cels only).

Remark: If we want to select a submatrix from A defiend by a given vectors of row and column indices, we can
do so in sequence: Rows (I) first, columns (J) next, like so:

𝐴[𝐼][:, 𝐽 ]

which we apply in the next line

In [25]: Phi[active] = spsolve( (A+Adiag)[active][:,active] ,RHS[active] )

At this point we solved the problem and now have the heads for all cells in the vector Phi.

We didn’t touch the rows and columns that are inactive. So the heads of these inactive cells whatever they are in
HI are know still in Phi. Just to make sure we detect them and won’t use them, set them to NaN (Not a Number).

In [26]: Phi[inact] = np.NaN

Finally we reshape the head vector to that of the model grid.

In [27]: Phi=Phi.reshape(sz) # reshape vector Phi to 3D shape of the grid

In [28]: Phi # show Phi

Out[28]: array([[[ 1.77107246, 1.77132861, 1.77183761, ..., 1.56399507,
1.56320139, 1.56280385],

[ 1.77081631, 1.77107575, 1.77159133, ..., 1.56360172,
1.56280525, 1.56240631],

[ 1.77030071, 1.77056677, 1.77109553, ..., 1.56281367,
1.56201158, 1.56160982],

...,
[ 0.05529699, 0.05524583, 0.0551436 , ..., 0.03419641,
0.03426788, 0.03430386],

[ 0.02763571, 0.02761016, 0.02755909, ..., 0.01708962,
0.01712512, 0.01714299],

[ 0. , 0. , 0. , ..., 0. ,
0. , 0. ]],

[[ 1.77107246, 1.77132861, 1.77183761, ..., 1.56399507,
1.56320139, 1.56280385],

[ 1.77081631, 1.77107575, 1.77159133, ..., 1.56360172,
1.56280525, 1.56240631],

[ 1.77030071, 1.77056677, 1.77109553, ..., 1.56281367,
1.56201158, 1.56160982],

...,
[ 0.05529699, 0.05524583, 0.0551436 , ..., 0.03419641,
0.03426788, 0.03430386],

[ 0.02763571, 0.02761016, 0.02755909, ..., 0.01708962,
0.01712512, 0.01714299],

[ 0. , 0. , 0. , ..., 0. ,
0. , 0. ]],

[[ 1.77107246, 1.77132861, 1.77183761, ..., 1.56399507,
1.56320139, 1.56280385],

[ 1.77081631, 1.77107575, 1.77159133, ..., 1.56360172,
1.56280525, 1.56240631],

[ 1.77030071, 1.77056677, 1.77109553, ..., 1.56281367,
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1.56201158, 1.56160982],
...,
[ 0.05529699, 0.05524583, 0.0551436 , ..., 0.03419641,
0.03426788, 0.03430386],

[ 0.02763571, 0.02761016, 0.02755909, ..., 0.01708962,
0.01712512, 0.01714299],

[ 0. , 0. , 0. , ..., 0. ,
0. , 0. ]],

[[ 1.77107246, 1.77132861, 1.77183761, ..., 1.56399507,
1.56320139, 1.56280385],

[ 1.77081631, 1.77107575, 1.77159133, ..., 1.56360172,
1.56280525, 1.56240631],

[ 1.77030071, 1.77056677, 1.77109553, ..., 1.56281367,
1.56201158, 1.56160982],

...,
[ 0.05529699, 0.05524583, 0.0551436 , ..., 0.03419641,
0.03426788, 0.03430386],

[ 0.02763571, 0.02761016, 0.02755909, ..., 0.01708962,
0.01712512, 0.01714299],

[ 0. , 0. , 0. , ..., 0. ,
0. , 0. ]]])

Plotting the heads as contours

Import the required plotting module and setup the plot.

In [29]: %matplotlib notebook
import matplotlib.pyplot as plt # combines namespace of numpy and pyplot

For coordinates of the cells use their centers.

In [30]: xm = 0.5 * (x[:-1] + x[1:]) # [L] coordinates of column centers
ym = 0.5 * (y[:-1] + y[1:]) # [L] coordinates of row centers
layer = 2 # contours for this layer
nc = 50 # number of contours in total

Plot the results using plt functions like in Matlab

In [31]: plt.xlabel('x [m]')
plt.ylabel('y [m]')
plt.title("Contours (%d in total) of the head in layer %d with inactive section" % (nc, layer))
plt.contour(xm, ym, Phi[layer], nc)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Out[31]: <matplotlib.contour.QuadContourSet at 0x10e3410f0>

• The white area is the aquifer part that was defined as inactive (impervious).

• The red trough is the well location.

• The two flanks and the front sides are closed (no FQ and no fixed head).

• The head at the back side is prescribed and maintained at zero.

Conclusion

In this chapter we have developed, from scratch, a full 3D finite difference model for which fixed heads, fixed
flows and inactive subareas are be prescribed. While developing we also computed a concrete example of which
the head contours were finally shown.
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To turn this model into a general Python function that can compute arbitrary 3D steady-state models of this kind,
we only have to gather the developed lines and put them under a function definition, add some help strings (a
doc string) and add error checking for convenience, while the data for this specific case, like the grid dimensions
(x,y,z) the conductivities (kx,ky,kz), the prescribed flows FQ and initial heads HI plus the boundary array
IBOUND that tells which cells have fixed heads and which are inactive, are to be passed as in user-given arguments
at the function call like so:

Phi = fdm3(x,y,z,kx,ky,kz,FQ,IH,IBOUND) # function that solves arbitrary 3D steady steate finite difference
model

We do this in the next section.
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CHAPTER 4

A finite difference model as a Python function

Prof. dr.ir.T.N.Olsthoorn

Heemstede, Sept. 2016, May 2017

Generalize the finite difference model into a callable function

The 3D finite difference computation in the previous chapter can be generalized by putting the generic parts in a
callable Python function and turning the the user or case specific data into the arguments by which the function is
called like so:

Phi = fdm3( x, y, z, kx, ky, kz, FQ, IH, IBOUND )

Doing so and adding some input error checking for convenience leads to the following code, that is save to disk
for future use:

In [1]: %%writefile fdm_a.py
# write the function in this cell to disk as file fdm.py

import numpy as np
#import pdb # in case we need to debug this function

def fdm3(x, y, z, kx, ky, kz, FQ, HI, IBOUND):
'''Returns computed heads of steady state 3D finite difference grid.

Steady state 3D Finite Difference Model that computes the heads a 3D ndarray.

Parameters
----------
`x` : ndarray, shape: Nx+1, [L]

`x` coordinates of grid lines perpendicular to rows, len is Nx+1
`y` : ndarray, shape: Ny+1, [L]

`y` coordinates of grid lines along perpendicular to columns, len is Ny+1
`z` : ndarray, shape: Nz+1, [L]

`z` coordinates of layers tops and bottoms, len = Nz+1
`kx`, `ky`, `kz` : ndarray, shape: (Ny, Nx, Nz) [L/T]

hydraulic conductivities along the three axes, 3D arrays.
`FQ` : ndarray, shape: (Ny, Nx, Nz), [L3/T]

prescrived cell flows (injection positive, zero of no inflow/outflow)
`IH` : ndarray, shape: (Ny, Nx, Nz), [L]

23
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initial heads. `IH` has the prescribed heads for the cells with prescribed head.
`IBOUND` : ndarray of int, shape: (Ny, Nx, Nz), dim: [-]

boundary array like in MODFLOW with values denoting

* IBOUND>0 the head in the corresponding cells will be computed

* IBOUND=0 cells are inactive, will be given value NaN

* IBOUND<0 coresponding cells have prescribed head

Returns
-------
`Phi` : ndarray, shape: (Ny, Nx, Nz), [L]

the 3D array with the final heads with `NaN` at inactive cells.

TO 160905
'''

import numpy as np
import scipy.sparse as sp
from scipy.sparse.linalg import spsolve # to use its short name

# pdb.set_trace()
x = np.sort(np.array(x)) # enforce ascending
y = np.sort(np.array(y))[::-1] # enforce descending
z = np.sort(np.array(z))[::-1] # enforce descending

# as well as the number of cells along the three axes
SHP = Nz, Ny, Nx = len(z) - 1, len(y)-1, len(x)-1

Nod = np.prod(SHP)

if Nod == 0:
raise AssertationError("Nx, Ny and Nz must be >= 1")

# assert correct shape of input arrays
if kx.shape != SHP:

raise AssertionError("shape of kx {0} differs from that of model {1}".format(kx.shape,SHP))
if ky.shape != SHP:

raise AssertionError("shape of ky {0} differs from that of model {1}".format(ky.shape,SHP))
if kz.shape != SHP:

raise AssertionError("shape of kz {0} differs from that of model {1}".format(kz.shape,SHP))

# from this we have the width of columns, rows and layers
dx = np.abs(np.diff(x).reshape(1, 1, Nx)) # enforce positive
dy = np.abs(np.diff(y).reshape(1, Ny, 1)) # enforce positive
dz = np.abs(np.diff(z)).reshape(Nz, 1, 1) # enforce positive

active = (IBOUND >0).reshape(Nod,) # boolean vector denoting the active cells
inact = (IBOUND==0).reshape(Nod,) # boolean vector denoting inacive cells
fxhd = (IBOUND <0).reshape(Nod,) # boolean vector denoting fixed-head cells

# half cell flow resistances
Rx = 0.5 * dx / (dy * dz) / kx
Ry = 0.5 * dy / (dz * dx) / ky
Rz = 0.5 * dz / (dx * dy) / kz

# set flow resistance in inactive cells to infinite
Rx = Rx.reshape(Nod,); Rx[inact] = np.Inf; Rx=Rx.reshape(SHP)
Ry = Ry.reshape(Nod,); Ry[inact] = np.Inf; Ry=Ry.reshape(SHP)
Rz = Rz.reshape(Nod,); Rz[inact] = np.Inf; Rz=Rz.reshape(SHP)

# conductances between adjacent cells
Cx = 1 / (Rx[:, :, :-1] + Rx[:, :, 1:])
Cy = 1 / (Ry[:, :-1, :] + Ry[:, 1:, :])
Cz = 1 / (Rz[:-1, :, :] + Rz[1:, :, :])
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NOD = np.arange(Nod).reshape(SHP)

IE = NOD[:, :, 1:] # east neighbor cell numbers
IW = NOD[:, :, :-1] # west neighbor cell numbers
IN = NOD[:, :-1, :] # north neighbor cell numbers
IS = NOD[:, 1:, :] # south neighbor cell numbers
IT = NOD[:-1, :, :] # top neighbor cell numbers
IB = NOD[1:, :, :] # bottom neighbor cell numbers

R = lambda x : x.ravel() # generate anonymous function R(x) as shorthand for x.ravel()

# notice the call csc_matrix( (data, (rowind, coind) ), (M,N)) tuple within tupple
A = sp.csc_matrix(( -np.concatenate(( R(Cx), R(Cx), R(Cy), R(Cy), R(Cz), R(Cz)) ),\

(np.concatenate(( R(IE), R(IW), R(IN), R(IS), R(IB), R(IT)) ),\
np.concatenate(( R(IW), R(IE), R(IS), R(IN), R(IT), R(IB)) ),\

)),(Nod,Nod))

# to use the vector of diagonal values in a call of sp.diags() we need to have it aa a
# standard nondimensional numpy vector.
# To get this:
# - first turn the matrix obtained by A.sum(axis=1) into a np.array by np.array( .. )
# - then take the whole column to loose the array orientation (to get a dimensionless numpy vector)
adiag = np.array(-A.sum(axis=1))[:,0]

Adiag = sp.diags(adiag) # diagonal matrix with a[i,i]

RHS = FQ.reshape(Nod,1) - A[:,fxhd].dot(HI.reshape(Nod,1)[fxhd]) # Right-hand side vector

Phi = HI.flatten() # allocate space to store heads

Phi[active] = spsolve( (A + Adiag)[active][:,active] ,RHS[active] ) # solve heads at active locations

Phi[inact] = np.NaN # put NaN at inactive locations

return Phi.reshape(SHP) # reshape vector to 3D size of original model

Overwriting fdm_a.py

In [2]: import numpy as np # we always need this
import fdm_a # import fdm_a module for use

from importlib import reload # we need reload if we edited the file fdm_a.py
reload(fdm_a) # if edited, must reload it

fdm3 = fdm_a.fdm3 # for convenience create a local name to just write fdm3

This function should be saved in a .py file e.g. “fdm3.py” so that it can be used as a module that can be imported
by other users or programs or scripts.

Apply the model

To apply the model we specify coofdinates, conductivities, prescribed flows and prescribed heads and the IBOUND
array. Then we call the function with the proper arguments. After the function computed the heads, we’ll show
them by a contour plot.

Generate input to run the model with

The lines below are case specific and could be placed in a script that can be run to set up the model afterw which
the model is called from the script with the proper arguments
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In [3]: # specify a rectangular grid
x = np.arange(-1000., 1000., 25.)
y = np.arange(-1000., 1000., 25.) # backward, i.e. first row grid line has highest y
z = np.arange(-100., 0., 20.) # backward, i.e. from top to bottom

SHP = (len(z)-1, len(y)-1, len(x)-1)

k = 10.0 # m/d uniform conductivity
kx = k * np.ones(SHP) # [L/T] 3D kx array
ky = k * np.ones(SHP) # [L/T] 3D ky array with same values as kx
kz = k * np.ones(SHP) # [L/T] 3D kz array with same values as kx

FQ = np.zeros(SHP) # all flows zero. Note sz is the shape of the model grid
FQ[2, 30, 25] = -1200 # [m3/d] extraction in this cell

HI = np.zeros(SHP) # initial heads

IBOUND = np.ones(SHP)
IBOUND[:, -1, :] = -1 # last row of model heads are prescribed
IBOUND[:, 40:45, 20:70]=0 # these cells are inactive

Call the function with the correct arguments

In [4]: Phi = fdm3( x, y, z, kx, ky, kz, FQ, HI, IBOUND)

Visualization of the results: plot heads as contours

Import the required plotting module and setup the plot and run %matplotlib notebook to allow plots beeing
shown inside the notebook.

In [5]: %matplotlib notebook
import matplotlib.pyplot as plt # combines namespace of numpy and pyplot

In [6]: xm = 0.5 * (x[:-1] + x[1:]) # cell center coordinates
ym = 0.5 * (y[:-1] + y[1:]) # same
layer = 2 # contours for this layer
nc = 50 # number of contours in total

plt.xlabel('x [m]')
plt.ylabel('y [m]')
plt.title("Contours (%d in total) of the head in layer %d with inactive section" % (nc, layer))
plt.contour(xm, ym, Phi[layer], nc)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Out[6]: <matplotlib.contour.QuadContourSet at 0x10e619240>

• The white area is the aquifer part that was defined as inactive (impervious).

• The red trough is the well location.

• The two flanks and the front sides are closed (no FQ and no fixed head).

• The head at the back side is prescribed and maintained at zero.

Conclusion

We have developed from scratch a full 3D steady-state finite difference mode for which fixed heads, fixed flows
and inactive subareas can be prescribed.
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This model is general, it can be called as a function and allows solving a wide range of different 3D steady-state
groundwater flow problems in a finite difference setting.

The function should be stored in a module (a .py file) and can then be imported from this module, like so

import mymodule

from mymodule import fdm3

Examples

Here we set-up a few simple examples that we can readily verify analytically. The examples are 2D and can easily
be computed with our 3D model.

In [7]: # basic imports

import numpy as np
%matplotlib notebook
import matplotlib.pyplot as plt # combines namespace of numpy and pyplot

import fdm_a
fdm3 = fdm_a.fdm3 # could also use from fdm_a import fdm3 (sets fdm3 as convenient local name).

Example 1: flow between 2 fixed bounaries

Consider the flow in an aquifer with constant transmissivity kD=1000 m2/d, with fixed head h=0 at the left and
the right boundaries at x=-L/2 and x=+L/2 respectively, subject to uniform precipitation N.

The analytical solution for this case is

$h = :raw-latex:‘\frac ‘N {2 kD} ( (:raw-latex:‘frac L 2) :sup:‘2-x2) $

The model will consist of 1 layer, is L=500 m wide, with cells of dx=10 m and is subject to N=0.01 m/d
recharge.

In order to put the fixed heads at the outer cell centers exactly at ± − 𝐿/2, we make the width of the outer cells
very small, 0.001 m say.

In [8]: # constants
N = 0.01 # m/d, precipitaion suplus
L = 500 # m, width of the cross section
k = 10 # m/d, aquifer conductivity
D = 100 # m/d, aquifer thickness
L = 1000 # m, width of the cross section
kD = k * D # m2/d, aquifer transmissivity

In [9]: # model grid
x = np.hstack((-L/2-0.001, np.linspace(-L/2, L/2, 51), L/2+0.001))
y = np.array([-0.5, 0.5]) # make the model 1m wide
z = np.array([-D, 0]) # use thickenss of model

Nz, Ny, Nx = SHP = (len(z) -1, len(y)-1, len(x)-1)

# cell center coordinates
xm = .5 * (x[:-1] + x[1:])
ym = .5 * (y[:-1] + y[1:])
zm = .5 * (z[:-1] + z[1:])

# cell size
dx = np.abs(np.diff(x));
dy = np.abs(np.diff(y));
dz = np.abs(np.diff(z));
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In [10]: # boundary array
IBOUND = np.ones(SHP)
IBOUND[:, :, [0, -1]] = -1 # fix head of left and right boundary

# conductivitys array
K = k * np.ones(SHP)

# prescribed flow = precipitation surplus
FQ = np.ones(SHP)
FQ[0, :, :] = dx * N

# Initial heads, all zero
HI = np.zeros(SHP)

In [11]: # run the model to compute the heads
Phi = fdm3(x, y, z, K, K, K, FQ, HI, IBOUND)

Vizualisation of the computed heads:

In [12]: %matplotlib notebook
import matplotlib.pyplot as plt # combines namespace of numpy and pyplot

plt.figure()
plt.xlabel('x [m]')
plt.ylabel('head [m]')
plt.title('Head between two fixed boundaries and constant precipitation {0} m/d'.format(N))
plt.plot(xm, Phi.ravel(), 'bo-', label='numeric')

# now add the analytical solution
fi = N/(2*kD) * ((L/2)**2 - x**2)
plt.plot(x, fi, 'xr', label='analytic')
plt.legend()

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Out[12]: <matplotlib.legend.Legend at 0x1073e4c50>

This shows that the analytical and numerical solutions match. Notice, however, that we have made the outer two
cells very narrow, so that the location of the x[0] and xm[0] and x[-1] and xm[-1] are almost indistinguish-
able, so that the position of the boundary are essentially the same for the numerical and the analytical model. (Just
make the outer two cells as wide as the other cells to see the difference.

The 3D model was used here as a 1D model along the x-axis. It should be evident that our 3D numerical model is
very flexible in modeling 1D, 2D as well as 3D situations.

Example 2, semi-confined flow (mazure case)

Assume the case where we have a water body with constant head ℎ = ℎ𝑤 that at x=0 is in direct contact with an
semi aquifer that is charaterized with constant transmissivity kD convered by a semi-confining layer with constant
resistance c above which we have a head that is maintained at a constant level ℎ = ℎ𝑝. This problem was solved
by Marzure around 1930 when he studied groundwater flow from the IJssel Lake to a new adjacent polder with a
5 m lower maintained water level.

The analytical solution for the head in the regional aquifer, that is, below the confining layer is

$ :raw-latex:‘\phi ‘- h\_p = (:raw-latex:‘phi‘_0 - h_p) „ :raw-latex:‘\exp ‘(-x / :raw-latex:‘lambda‘) $

with 𝜆 =
√
𝑘𝐷𝑐

Let’s work out this case to compare the analytical result with our model.

In [13]: # import numpy as np, assumed numpy has been loaded above
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k = 25 # m/d conductivity of regional aquifer
D = 50 # m thickness of regional aquifer
d = 10 # m thickness of confining layer
dtop = 0.001 # m dummy thickness of layer in which the head is maintained
c = 500.0 # d vertical hydraulic resistance of confining layer
hw = -0.4 # m fixed IJssel lake elevation
hp = -5.0 # m fixed polder water elevation.

kD = k*D
lam = np.sqrt(kD * c)

In [14]: x = np.hstack((-0.001, np.linspace(0, 5000, 100)))
y = np.array([-0.5, 0.5])
grs = 0 # m, ground surface elevation
z = np.array([grs-D-d-dtop, grs-d-dtop, grs-dtop, grs])

In [16]: Nz, Ny, Nx = SHP = len(z)-1, len(y)-1, len(x)-1
IBOUND = np.ones(SHP)
IBOUND[0, :, :] = -1 # fixed head maintained in top layer (above confining layer)
IBOUND[-1, :, 0] = -1 # fixed head in aquifer at x=0

HI = np.zeros(SHP)
HI[-1, :, 0] = hw # fixed level of IJssel Lake
HI[ 0, :, :] = hp # fixed polder level

FQ = np.zeros(SHP) # no fixed flows

kAquif = k;
kConf = d/c;
kTop = 100; #immaterial

K = np.array([kTop, kConf, kAquif]).reshape(Nz, 1, 1) * np.ones(SHP)

In [17]: Phi = fdm3(x, y, z, K, K, K, FQ, HI, IBOUND)

In [18]: plt.figure()
plt.xlabel('x [m]')
plt.ylabel('head [m]')
plt.title('Head between two fixed boundaries and constant precipitation {0} m/d'.format(N))

xm = 0.5 * (x[:-1] + x[1:])
plt.plot(xm, Phi[-1][0], 'bo-')

# now add the analytical solution
fi = hp + (hw - hp) * np.exp(-x/lam)
plt.plot(x, fi, 'xr-')

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Out[18]: [<matplotlib.lines.Line2D at 0x10ef718d0>]

As can be seen, the analytical and the numeical model match. Notice that here we made the first cell width very
small, so that the fixed head in the first cell falls almost exactly at zero. Had we not done so, then the fixed head
of the numerical model would have been at xm[0] = 50 i.e. in the center of the first cell, while the fixed head
in the analytical solution would still be at exactly x = 0, which would lead to a difference between the two
solutions. Just try this by setting the width of the first model cell equal to 100 m instead of 0.001 m.

Another issue is that the numerical model is closed at the right-hand side, i.e. where x = 5000 m. In this
example, this distance is so large that the effect of the left boundary is almost zero, so that the difference between
the analytical solution and the numerical model is not visibile in the graph. Just try to make the right-hand side of
the model less far to see the difference.

Of course one could easily fix the right-hand boundary as well as the left-hand one, to obtain a solution that is
bounded by fixed heads on either side. It’s easy to derive the analytical solution for that case as well and to verify
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it with the numerical model. This is left as an exercise to the student.

The analytical solution for the the same head at either side of the cross section is this

$:raw-latex:phi ‘- h_p = (h_w - h_p ) :raw-latex:frac {cosh (frac x lambda ) } {cosh (frac {L,/2} lambda)}‘ $

Also notice that we have now a 3 layer model, one row, a large number of columns and 3 layers. We simply could
make the model full 3D by taking more than one row. It should also be clear that the properties of the layers can
be varies arbitrarily on a cell by cell basis.

Example 3, same case, but using only two layers

Instead of 3 layers, we may use only two and fix the head in the semi confining layer. Because of the derivation of
our the finite difference method water flows between cell centers. This means that, when we use the semi confing
layer to also prescribe the head, this head is prescribed at the center of the layer, and the water flows vertically
from or to the center of that layer from the bottom of that layer, so that only half its thickness is active for vertical
flow. For the model layout, it implies that we should put the center of the layer at the elevation of ground surface
and only take the vertical flow through half the layer into account. This is worked out below.

In [19]: # aquifer
k = 25 # m/d conductivity of regional aquifer
D = 50 # m thickness of regional aquifer
d = 20 # m thickness of confining layer
c = 500.0 # d vertical hydraulic resistance of confining layer
hw = -0.4 # m fixed IJssel lake elevation
hp = -5.0 # m fixed polder water elevation.

kD = k*D
lam = np.sqrt(kD * c)

In [20]: x = np.hstack((-0.001, np.linspace(0, 5000, 100)))
y = np.array([-0.5, 0.5])
grs = 0 # m, ground surface elevation
z = np.array([grs-D-d, grs-d, grs+d])

In [21]: Nz, Ny, Nx = SHP = len(z)-1, len(y)-1, len(x)-1
IBOUND = np.ones(SHP)
IBOUND[0, :, :] = -1 # fixed head maintained in top layer (above confining layer)
IBOUND[-1, :, 0] = -1 # fiex head in aquifer at x=0

HI = np.zeros(SHP)
HI[-1, :, 0] = hw # fixed level of IJssel Lake
HI[ 0, :, :] = hp # fixed polder level

FQ = np.zeros(SHP) # no fixed flows

kAquif = k;
kConf = d/c;
kTop = 100; #immaterial

K = np.array([kConf, kAquif]).reshape(Nz, 1, 1) * np.ones(SHP)

In [22]: Phi = fdm3(x, y, z, K, K, K, FQ, HI, IBOUND)

In [24]: # %matplotlib notebook # already done above
# import matplotlib.pyplot as plt # combines namespace of numpy and pyplot

plt.figure()
plt.xlabel('x [m]')
plt.ylabel('head [m]')
plt.title('Head between two fixed boundaries and constant precipitation {0} m/d'.format(N))

xm = 0.5 * (x[:-1] + x[1:])
plt.plot(xm, Phi[-1][0], 'bo-')
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# now add the analytical solution
fi = hp + (hw - hp) * np.exp(-x/lam)
plt.plot(x, fi, 'xr-')

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Out[24]: [<matplotlib.lines.Line2D at 0x10f501588>]

As can be seen, we get same result as before, but now with only two layers, of which the top one represents the
semi confined layer in which center the head is prescribed.

Cicular island with recharge

This examples uses a flat model (one layer) and places a fixed head outside the boundary of the island.

In [47]: x = np.linspace(-1000., +1000., 200)
y = np.linspace(-1000., +1000., 200)
z = np.array([0., -100.])

xm = 0.5 * (x[:-1] + x[1:])
ym = 0.5 * (y[:-1] + y[1:])
zm = 0.5 * (z[:-1] + z[1:])

Nx = len(xm)
Ny = len(ym)
Nz = len(zm)

SHP = (Nz, Ny, Nx)

ZM, YM, XM = np.meshgrid(zm, ym, xm, indexing='ij') # full 3D arrays of cell center coordinates

DX = np.abs(np.diff(x).reshape((1, 1, Nx)) * np.ones(SHP)) # column width (3D aray)
DY = np.abs(np.diff(y).reshape((1, Ny, 1)) * np.ones(SHP)) # row widths (3D array)

x0 = 0.; y0 = 0. # center of the island

RM = np.sqrt((XM - x0)**2 + (YM - y0)**2).reshape(SHP) # distance to center

R = 750.0 # [m] radius of the island

IBOUND = np.ones(SHP)
IBOUND[RM>R] = -1

k0 = 10 # [m/d]
k = k0 * np.ones(SHP) # uniform conductivity

kD = float(k0 * np.abs(np.diff(z)))

rch = 0.01 # [m/d] recharge rate
FQ = rch * DX * DY # [m3/d] cell inflows
IH = np.zeros(SHP) # [m] initial heads

Phi = fdm3(x, y, z, k, k, k, FQ, IH, IBOUND) # run model, return heads

# plot the heads a contours
plt.figure()
plt.xlabel('x [m]'); plt.ylabel('y [m]')
plt.title('Circular island with radius R={0} m and recharge N = {1} m/d'.format(R,N))
plt.contourf(xm,ym,Phi[0],50)
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# plot the heads along the cross section and compare with analytical solution
plt.figure()
plt.xlabel('x [m]'); plt.ylabel('y [m]')
plt.title('Heads through the center of the island')
centerRow = int(np.floor(Ny/2))
plt.plot(xm, Phi[0, centerRow, :], label='Numeric')
Island = np.logical_and(xm >= -R, xm <= R)
plt.plot(xm[Island], N/(4 * kD) * (R**2 - xm[Island] ** 2), label='Analytic')
plt.legend()

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Out[47]: <matplotlib.legend.Legend at 0x10f52fa20>

Notice the difference between the analytic and numeric solution. This difference depends on the size of the
number of cells that are used. The finer the model, the better the agreement. A small agreement remains because
the boundary of the numeric model is not perfectly circular. We will a develop and use an axisymmetric model in
the next chapter.

Circular polder

This circular polder is also a circular island with fixed boundary at distance R from its center, but instead of a
uniform recharge we have leakage through a semi-confining top layer that we will simulate using an extra layer.

Within the island we have a fixed head above the confining top layer. As an extra example we can choose to extend
the polder to not be surrounded by open water with a fixed head but by other land where the head is fixed above
the confing layer but at a different value.

Much of the set-up below is copied from the previous example.

In [46]: import scipy # we need bessel functions

I0 = scipy.special.i0 # bessel function
I1 = scipy.special.i1 # same
K0 = scipy.special.k0 # same
K1 = scipy.special.k1 # same

z0= 0. # m, reference elevation, ground surface
d = 10. # m, thickness of confining layer
D = 100. # m, thickness of regional aquifer

R = 750. # m, radius of island
x0 = 0.; y0 = 0. # center of the island

hp = -2.0 # m, maintained head r<=R
hl = 0.50 # m, maintained head r>R

c = 250. # d, vertical hydraulic resistance of confining layer
k0 = d/c # m/d vertical conductivity of confining layer
k1 = 10. # m/d, conductivity of regional layer
kD = k1 * D # m2/d transmissivity of regional aquifer
lam = np.sqrt(kD * c) # m, spreading or characteristic length of aquifer system

# The grid, coordinates and size
x = np.linspace(-2000., +2000., 200)
y = np.linspace(-2000., +2000., 200)
z = z0 - np.array([0, d, d+D])
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xm = 0.5 * (x[:-1] + x[1:])
ym = 0.5 * (y[:-1] + y[1:])
zm = 0.5 * (z[:-1] + z[1:])

Nx = len(xm)
Ny = len(ym)
Nz = len(zm)

SHP = (Nz, Ny, Nx)

ZM, YM, XM = np.meshgrid(zm, ym, xm, indexing='ij') # full 3D arrays of cell center coordinates

DX = np.abs(np.diff(x).reshape((1, 1, Nx)) * np.ones(SHP)) # column width (3D aray)
DY = np.abs(np.diff(y).reshape((1, Ny, 1)) * np.ones(SHP)) # row widths (3D array)

RM = np.sqrt((XM - x0)**2 + (YM - y0)**2).reshape(SHP) # distance to center
in_polder = RM[0, :, :]<=R
in_land = np.logical_not(in_polder)

IBOUND = np.ones(SHP)
IBOUND[0, :, :] = -1 # maintain head everywhere in confining layer

k = np.ones(SHP) # uniform conductivity
k[ 0, :, :] = k0/2 # m/d, top layer
k[-1, :, :] = k1 # m/d, bottom layer

rch = 0.01 # [m/d] recharge rate
FQ = np.zeros(SHP)# [m3/d] cell inflows

IH = np.zeros(SHP) # [m] initial heads
H = np.ones((Ny, Nx)) # m, maintained head in top layer
H[in_land] = hl # outside R
H[in_polder]= hp # inside R

IH[0, :, :] = H # use in initial heads

Phi = fdm3(x, y, z, k, k, k, FQ, IH, IBOUND) # run model, return heads

# plot the heads a contours
plt.figure()
plt.xlabel('x [m]'); plt.ylabel('y [m]')
plt.title('Circular polder with surrounding land, semi confined regional aquifer')
plt.contourf(xm,ym,Phi[-1],50) # contour bottom layer

# plot the heads along the cross section and compare with analytical solution
plt.figure()
plt.xlabel('x [m]'); plt.ylabel('y [m]')
plt.title('Heads through the center of the polder and land')
centerRow = int(np.floor(Ny/2))

plt.plot(xm, Phi[-1, centerRow, :], label='Numeric')
Island = np.logical_and(xm>=-R, xm<=R)

# Analytical solution
RL = R/lam # shorthand

# head at x==R
xPold = xm[np.abs(xm) <= R] - x0 # inside polder
xLand = xm[np.abs(xm) > R] - y0 # outside polder

# head a x==R, analytical
phiR = (hp * I1(RL) / I0(RL) + hl* K1(RL) / K0(RL)) / (I1(RL) / I0(RL) + K1(RL) / K0(RL))
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phiPold = hp + (phiR - hp) * I0(np.abs(xPold) / lam) / I0(RL) # h in polder, r<=R
phiLand = hl + (phiR - hl) * K0(np.abs(xLand) / lam) / K0(RL) # h outside polder, r> R

plt.plot(xPold, phiPold, 'r-', label='Poldm analytic')
plt.plot(xLand, phiLand, 'g-', label='Land analytic')

plt.legend()

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Out[46]: <matplotlib.legend.Legend at 0x10dd7d710>

The analytical solution matches the numerical one except near the edges of the model, where the model is closed
and the analytical solution is not. The numerical solution, therefore, becomes horizontal near the boundary,
indicating no flow across it. One also notices the distortion of the circular color field in the first figure due to the
boundaries of the square shape of our model. Notice that the only boundary conditions in this model are prescribed
heads in the top layer, which are different inside and outside the radius R.

One nicely see both analytical solutions, one for the land outside the polder (green) and one for the land inside teh
polder (red).

There is a small difference between the numerical and analytical solution in the center. Again, this may be due to
the fact that the circular polder can’t be perfectly circular due to the rectangular cells of the model. But the larger
the number of cells, the smaller the difference will be.

It is important to note that we used half the vertical conductivity of the top layer. This is because in the model,
water flows vertically from the center of the toplayer, where the head is fixed to the bottom, that is, it passes only
half the cell. To keep the resistance of this lower half of the cell equal to the given vertical hydraulic resisttance,
we have to use $ k0 = (d/2) / c $ instead of $ k0 = d/c $

More efficient coordinates

One sees that to set up a model, there area quite some lines that deal with the grid coordinates. This can be done
a lot more efficient with a Grid class, the instances of which are invoked with the grid coordinates, after which a
large number of variables can be requested from it, variables that are computed upon request.
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CHAPTER 5

Computing flows with the finite difference model

Prof. dr.ir.T.N.Olsthoorn

Heemstede, Sept. 2016

Adding flows to the output of fdm3

Until now, the 3D finite difference model was used to compute only the heads in the cell centers. It should,
however been clear that the model has all the information on board to also compute the flows. In fact, each line in
the system matrix is a cell’s water balance and computes flows over all faces of the cell in question including the
total net inflow of each cell. The equation

$ Q_x = -C_x :raw-latex:‘times ‘„ diff (Phi, axis=1) $

is the flow across all cell faces perpendicular to the x-axis. Likewise

$ Q_y = +C_y :raw-latex:‘times ‘, , diff (Phi, axis=0) $

is the flow across all cell faces perpendicular to the y-axis in direction of this axis, and

$ Q_z = +C_z :raw-latex:‘times ‘, , diff(Phi, axis=2) $

is the upward vertical flow

In fact, we can readily compute these flow across cell faces within our model as is shown below.

We can also compute the total net inflow of all individual cells from the matrix multiplication

$ Q = A :raw-latex:‘\times ‘:raw-latex:‘Phi ‘$

where A is the system matrix with the conductances and Φ is the complete vector of heads, including the fixed
heads, as all computed and prescribed heads are known after the model has been solved.

Flow output of the model

Because we have all the information to compute all flows at our disposition inside the function when computing
the heads, we can, and perhaps should, at the same time compute these important flow arrays:

• Q : ndarray shape (Ny, Nx , Nz) [L3/T] # total net inflow of cells
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• Qx : ndarray shape (Ny, Nx-1, Nz) [L3/T] # flow across cell faces in x-direction

• Qy : ndarray shape (Ny-1, Nx, Nz) [L3/T] # flow across cell faces in y-direction

• Qz : ndarray shape (Ny, Nx, Nz-1) [L3/T] # flow across cell faces in z-direction

We gather the computed arrays of Phi, Q, Qx, Qy and Qz in an single named tuple output named Out, from
which the individual arrays may be addressed by their name like so:

Out.Phi, Out.Q, Out.Qx, Out.Qy and Out.Qz

Flows in the cell centers

The flows at across the cell iterfaces and the net inflow for each cell is uniquely defined by the equations given
above. But this is not true for the velocity or specific discharge, because the cell face area jumps at the cell
itnerface. So we mat have a different specific discharge perpendicular to the cell face just to the right and to the
left of it.

Therefore, such specific discharge (the Darcy velocity) are generally computed for the cell centers by averaging
the total flow at two opposite cell faces and deviding by the cross section perpendicular to the cell face. This
vector is unique, yet not completely defined for the case when we also have an extraction in the cell. But this does
not geneally or necessarly disturb the picture of velocity vectors much. So we will use this method further down.

We have written a function quivdata to extract the necessary coordinates and flows or velocities for displaying
them as arrows with the matplotlib function quiver, see example further down.

Some more additions been made to the model:

• Applying the function unique to x, y and z input vectors to prevent duplicates. The function unique
is defined in the module fdm. It allows entering coordinates in arbitrary order as they will be sorted and
double values will be eliminated according to some user definable tolerance.

• Keeping track of the axis directions. We demand that x must be ascending, while y and z must be de-
scending. This way columns (x) run from left to right when printing, the top row is the one with the largest
y-coordinate and the top layer is the one with the highest z-coordinate. Enforcing these directions make
interpreting scrolled or printed output intuitive and ensures the correct sign of flows. That is, a postive Qx,
Qy and Qz always points into the direction of higher coordinates.

The adapted model is shown below.

fdm3 model with computation of flows

The model fdm3 is written to the module fdm.py together with the functions quivdata and unique

In [1]: %%writefile fdm_b.py

import numpy as np
import pdb
import scipy.sparse as sp
from scipy.sparse.linalg import spsolve # to use its short name
from collections import namedtuple

class InputError(Exception):
pass

def quivdata(Out, x, y, z=None, iz=0):
"""Returns coordinates and velocity components to show velocity with quiver

Compute arrays to display velocity vectors using matplotlib's quiver.
The quiver is always drawn in the xy-plane for a specific layer. Default iz=0
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Parameters
----------
`Out` : namedtuple holding arrays `Qx`, `Qy`, `Qz` as defined in `fdm3`

`Qx` : ndarray, shape: (Ny, Nx-1, Nz), [L3/T]
Interfacial flows in finite difference model in x-direction from `fdm3'

`Qy` : ndarray, shape: (Ny-1, Nx, Nz), [L3/T]
Interfacial flows in finite difference model in y-direction from `fdm3`

`Qz` : ndarray, shape: (Ny, Nx, Nz-1), [L3/T]
Interfacial flows in finite difference model in z-direction from `fdm3`

`x` : ndarray, [m]
Grid line coordinates of columns

'y' : ndarray, [m]
Grid line coordinates of rows

`z` : ndaray [L] | int [-]
If z == None, then iz must be given (default = 0)
If z is an ndarray vector of floats

z will be interpreted as the elvations of uniform layers.
iz will be ignored

If z is a full 3D ndarray of floats
z will be interpreted as the elevations of the tops and bottoms of all cells.
iz will be ignored

`iz` : int [-]
iz is ignored if z ~= None
iz is the number of the layer for which the data are requested,
and all output arrays will be 2D for that layer.

Returns
-------
`Xm` : ndarray, shape: (Nz, Ny, Nx), [L]

x-coordinates of cell centers
`Ym` : ndarray, shape: (Nz, Ny, Nx), [L]

y-coodinates of cell centers
`ZM` : ndarray, shape: (Nz, Ny, Nx), [L]

`z`-coordinates at cell centers
`U` : ndarray, shape: (Nz, Ny, Nx), [L3/d]

Flow in `x`-direction at cell centers
`V` : ndarray, shape: (Nz, Ny, Nx), [L3/T]

Flow in `y`-direction at cell centers
`W` : ndarray, shape: (Nz, Ny, Nx), [L3/T]

Flow in `z`-direction at cell centers.

"""
Ny = len(y)-1
Nx = len(x)-1

xm = 0.5 * (x[:-1] + x[1:])
ym = 0.5 * (y[:-1] + y[1:])

X, Y = np.meshgrid(xm, ym) # coordinates of cell centers

# Flows at cell centers
U = np.concatenate((Out.Qx[iz, :, 0].reshape((1, Ny, 1)), \

0.5 * (Out.Qx[iz, :, :-1].reshape((1, Ny, Nx-2)) +\
Out.Qx[iz, :, 1: ].reshape((1, Ny, Nx-2))), \

Out.Qx[iz, :, -1].reshape((1, Ny, 1))), axis=2).reshape((Ny,Nx))
V = np.concatenate((Out.Qy[iz, 0, :].reshape((1, 1, Nx)), \

0.5 * (Out.Qy[iz, :-1, :].reshape((1, Ny-2, Nx)) +\
Out.Qy[iz, 1:, :].reshape((1, Ny-2, Nx))), \

Out.Qy[iz, -1, :].reshape((1, 1, Nx))), axis=1).reshape((Ny,Nx))
return X, Y, U, V

def unique(x, tol=0.0001):
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"""return sorted unique values of x, keeping ascending or descending direction"""
if x[0]>x[-1]: # vector is reversed

x = np.sort(x)[::-1] # sort and reverse
return x[np.hstack((np.diff(x) < -tol, True))]

else:
x = np.sort(x)
return x[np.hstack((np.diff(x) > +tol, True))]

def fdm3(x, y, z, kx, ky, kz, FQ, HI, IBOUND):
'''Steady state 3D Finite Difference Model returning computed heads and flows.

Heads and flows are returned as 3D arrays as specified under output parmeters.

Parameters
----------
`x` : ndarray,[L]

`x` coordinates of grid lines perpendicular to rows, len is Nx+1
`y` : ndarray, [L]

`y` coordinates of grid lines along perpendicular to columns, len is Ny+1
`z` : ndarray, [L]

`z` coordinates of layers tops and bottoms, len = Nz+1
`kx`, `ky`, `kz` : ndarray, shape: (Ny, Nx, Nz), [L/T]

hydraulic conductivities along the three axes, 3D arrays.
`FQ` : ndarray, shape: (Ny, Nx, Nz), [L3/T]

prescrived cell flows (injection positive, zero of no inflow/outflow)
`IH` : ndarray, shape: (Ny, Nx, Nz), [L]

initial heads. `IH` has the prescribed heads for the cells with prescribed head.
`IBOUND` : ndarray, shape: (Ny, Nx, Nz) of int

boundary array like in MODFLOW with values denoting

* IBOUND>0 the head in the corresponding cells will be computed

* IBOUND=0 cells are inactive, will be given value NaN

* IBOUND<0 coresponding cells have prescribed head

outputs
-------
`Out` : namedtuple containing heads and flows:

`Out.Phi` : ndarray, shape: (Ny, Nx, Nz), [L3/T]
computed heads. Inactive cells will have NaNs

`Out.Q` : ndarray, shape: (Ny, Nx, Nz), [L3/T]
net inflow in all cells, inactive cells have 0

`Out.Qx : ndarray, shape: (Ny, Nx-1, Nz), [L3/T]
intercell flows in x-direction (parallel to the rows)

`Out.Qy` : ndarray, shape: (Ny-1, Nx, Nz), [L3/T]
intercell flows in y-direction (parallel to the columns)

`Out.Qz` : ndarray, shape: (Ny, Nx, Nz-1), [L3/T]
intercell flows in z-direction (vertially upward postitive)

the 3D array with the final heads with `NaN` at inactive cells.

TO 160905
'''

# define the named tuple to hold all the output of the model fdm3
Out = namedtuple('Out',['Phi', 'Q', 'Qx', 'Qy', 'Qz'])
Out.__doc__ = """fdm3 output, <namedtuple>, containing fields Phi, Qx, Qy and Qz\n \

Use Out.Phi, Out.Q, Out.Qx, Out.Qy and Out.Qz"""

x = unique(x)
y = unique(y)[::-1] # unique and descending
z = unique(z)[::-1] # unique and descending

# as well as the number of cells along the three axes
SHP = Nz, Ny, Nx = len(z)-1, len(y)-1, len(x)-1
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Nod = np.prod(SHP)

if Nod == 0:
raise AssetError(

"Grid shape is (Ny, Nx, Nz) = {0}. Number of cells in all 3 direction must all be > 0".format(SHP))

if kx.shape != SHP:
raise AssertionError("shape of kx {0} differs from that of model {1}".format(kx.shape,SHP))

if ky.shape != SHP:
raise AssertionError("shape of ky {0} differs from that of model {1}".format(ky.shape,SHP))

if kz.shape != SHP:
raise AssertionError("shape of kz {0} differs from that of model {1}".format(kz.shape,SHP))

# from this we have the width of columns, rows and layers
dx = np.abs(np.diff(x)).reshape(1, 1, Nx)
dy = np.abs(np.diff(y)).reshape(1, Ny, 1)
dz = np.abs(np.diff(z)).reshape(Nz, 1, 1)

active = (IBOUND>0).reshape(Nod,) # boolean vector denoting the active cells
inact = (IBOUND==0).reshape(Nod,) # boolean vector denoting inacive cells
fxhd = (IBOUND<0).reshape(Nod,) # boolean vector denoting fixed-head cells

# half cell flow resistances
Rx = 0.5 * dx / (dy * dz) / kx
Ry = 0.5 * dy / (dz * dx) / ky
Rz = 0.5 * dz / (dx * dy) / kz

# set flow resistance in inactive cells to infinite
Rx = Rx.reshape(Nod,); Rx[inact] = np.Inf; Rx=Rx.reshape(SHP)
Ry = Ry.reshape(Nod,); Ry[inact] = np.Inf; Ry=Ry.reshape(SHP)
Rz = Rz.reshape(Nod,); Rz[inact] = np.Inf; Rz=Rz.reshape(SHP)

# conductances between adjacent cells
Cx = 1 / (Rx[:, :, :-1] + Rx[:, :, 1:])
Cy = 1 / (Ry[:, :-1, :] + Ry[:, 1:, :])
Cz = 1 / (Rz[:-1, :, :] + Rz[1:, :, :])

NOD = np.arange(Nod).reshape(SHP)

IE = NOD[:, :, 1:] # east neighbor cell numbers
IW = NOD[:, :, :-1] # west neighbor cell numbers
IN = NOD[:, :-1, :] # north neighbor cell numbers
IS = NOD[:, 1:, :] # south neighbor cell numbers
IT = NOD[:-1, :, :] # top neighbor cell numbers
IB = NOD[1:, :, :] # bottom neighbor cell numbers

R = lambda x : x.ravel() # generate anonymous function R(x) as shorthand for x.ravel()

# notice the call csc_matrix( (data, (rowind, coind) ), (M,N)) tuple within tupple
# also notice that Cij = negative but that Cii will be postive, namely -sum(Cij)
A = sp.csc_matrix(( -np.concatenate(( R(Cx), R(Cx), R(Cy), R(Cy), R(Cz), R(Cz)) ),\

(np.concatenate(( R(IE), R(IW), R(IN), R(IS), R(IB), R(IT)) ),\
np.concatenate(( R(IW), R(IE), R(IS), R(IN), R(IT), R(IB)) ),\

)),(Nod,Nod))

# to use the vector of diagonal values in a call of sp.diags() we need to have it aa a
# standard nondimensional numpy vector.
# To get this:
# - first turn the matrix obtained by A.sum(axis=1) into a np.array by np.array( .. )
# - then take the whole column to loose the array orientation (to get a dimensionless numpy vector)
adiag = np.array(-A.sum(axis=1))[:,0]
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Adiag = sp.diags(adiag) # diagonal matrix with a[i,i]

RHS = FQ.reshape(Nod,1) - A[:,fxhd].dot(HI.reshape(Nod,1)[fxhd]) # Right-hand side vector

Out.Phi = HI.flatten() # allocate space to store heads

Out.Phi[active] = spsolve( (A+Adiag)[active][:,active] ,RHS[active] ) # solve heads at active locations

# net cell inflow
Out.Q = (A+Adiag).dot(Out.Phi).reshape(SHP)

# set inactive cells to NaN
Out.Phi[inact] = np.NaN # put NaN at inactive locations

# reshape Phi to shape of grid
Out.Phi = Out.Phi.reshape(SHP)

#Flows across cell faces
Out.Qx = -np.diff( Out.Phi, axis=2) * Cx
Out.Qy = +np.diff( Out.Phi, axis=1) * Cy
Out.Qz = +np.diff( Out.Phi, axis=0) * Cz

return Out # all outputs in a named tuple for easy access

Overwriting fdm_b.py

These functions have now been saved in the file “fdm_b.py”. This file is a module, which can be imported, after
which the functions in it can be used in programs and scripts.

In [2]: import fdm_b
from importlib import reload
reload(fdm_b)

Out[2]: <module 'fdm_b' from '/Users/Theo/GRWMODELS/python/FDM_course/fdm_b.py'>

Application of the model

Generate input to run the model with (same example)

In [3]: import numpy as np
reload(fdm_b) # make sure we reload because we edit the file regularly

# specify a rectangular grid
x = np.arange(-1000., 1000., 25.)
y = np.arange( 1000., -1000., -25.)
z = np.array([20, 0 ,-10, -100.])

Nz, Ny, Nx = SHP = len(z)-1, len(y)-1, len(x)-1

k = 10.0 # m/d uniform conductivity
kx = k * np.ones(SHP)
ky = k * np.ones(SHP)
kz = k * np.ones(SHP)

IBOUND = np.ones(SHP)
IBOUND[:, -1, :] = -1 # last row of model heads are prescribed
IBOUND[:, 40:45, 20:70]=0 # inactive

FQ = np.zeros(SHP) # all flows zero. Note SHP is the shape of the model grid
FQ[1, 30, 25] = -1200 # extraction in this cell

HI = np.zeros(SHP)
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Call the function with the correct arguments

In [4]: Out = fdm_b.fdm3( x, y, z, kx, ky, kz, FQ, HI, IBOUND)

# when not using some of the parameters
#Phi, _, _, _ = fdm.fdm3( x, y, z, kx, ky, kz, FQ, HI, IBOUND) # ignore them using the _
#Phi, _Qx, _Qy, _Qz = fdm.fdm3( x, y, z, kx, ky, kz, FQ, HI, IBOUND) # make them private

Visualization of the results: plot heads as contours

Import the required plotting module and setup the plot.

In [5]: %matplotlib notebook
import matplotlib.pyplot as plt # combines namespace of numpy and pyplot

In [6]: print('Out.Phi.shape = {0}'.format(Out.Phi.shape))
print('Out.Q.shape = {0}'.format(Out.Q.shape))
print('Out.Qx.shape = {0}'.format(Out.Qx.shape))
print('Out.Qy.shape = {0}'.format(Out.Qy.shape))
print('Out.Qz.shape = {0}'.format(Out.Qz.shape))

Out.Phi.shape = (3, 79, 79)
Out.Q.shape = (3, 79, 79)
Out.Qx.shape = (3, 79, 78)
Out.Qy.shape = (3, 78, 79)
Out.Qz.shape = (2, 79, 79)

In [7]: xm = 0.5 * (x[:-1] + x[1:])
ym = 0.5 * (y[:-1] + y[1:])

layer = 2 # contours for this layer
nc = 50 # number of contours in total

plt.xlabel('x [m]')
plt.ylabel('y [m]')
plt.title("Contours (%d in total) of the head in layer %d with inactive section" % (nc, layer))
plt.contour(xm, ym, Out.Phi[layer], nc)

#plt.quiver(X, Y, U, V) # show velocity vectors
X, Y, U, V = fdm_b.quivdata(Out, x, y, iz=0)
plt.quiver(X, Y, U, V)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Out[7]: <matplotlib.quiver.Quiver at 0x10e69d898>

• The white area is the aquifer part that was defined as inactive (impervious).

• The red trough is the well location.

• The two flanks and the front sides are closed (no FQ and no fixed head).

• The head at the back side is prescribed and maintained at zero.

Notice that the quidata function uses the computed flow arrays Out.Qx and Out.Qy. We can verfiy the net inflow
for all cells by printing or contouring the values.

In [8]: print('\nSum of the net inflow over all cells is sum(Q) = {0:g} [m3/d]\n'.format(np.sum(Out.Q.ravel())))

Sum of the net inflow over all cells is sum(Q) = 4.80952e-10 [m3/d]

It can be seen that the sum of Out.Q over all cells is indeed zero (almost).

5.4. Application of the model 41



FD Modeling Course Groundwater Flow, Release 0.01

In [9]: print('\nThe indivdual values for the top layer are shown here:')
print(np.round(Out.Q[:,:,0].T,2))

The indivdual values for the top layer are shown here:
[[ -0. 0. 0. ]
[ 0. 0. -0. ]
[ 0. 0. 0. ]
[ 0. -0. -0. ]
[ -0. -0. 0. ]
[ -0. -0. 0. ]
[ 0. -0. 0. ]
[ -0. -0. -0. ]
[ -0. 0. -0. ]
[ -0. 0. 0. ]
[ 0. 0. -0. ]
[ -0. 0. -0. ]
[ 0. 0. 0. ]
[ -0. 0. 0. ]
[ 0. 0. 0. ]
[ -0. 0. -0. ]
[ 0. -0. 0. ]
[ -0. 0. -0. ]
[ 0. 0. 0. ]
[ 0. 0. -0. ]
[ -0. 0. -0. ]
[ -0. 0. 0. ]
[ -0. 0. -0. ]
[ 0. 0. 0. ]
[ -0. 0. -0. ]
[ 0. 0. 0. ]
[ -0. 0. 0. ]
[ -0. 0. -0. ]
[ 0. 0. -0. ]
[ -0. 0. 0. ]
[ 0. 0. 0. ]
[ -0. 0. 0. ]
[ 0. 0. 0. ]
[ -0. 0. -0. ]
[ 0. 0. -0. ]
[ 0. -0. 0. ]
[ -0. 0. -0. ]
[ -0. 0. -0. ]
[ 0. -0. 0. ]
[ 0. 0. -0. ]
[ 0. -0. -0. ]
[ -0. -0. -0. ]
[ 0. 0. 0. ]
[ -0. 0. -0. ]
[ -0. 0. -0. ]
[ -0. 0. 0. ]
[ 0. 0. 0. ]
[ -0. 0. -0. ]
[ -0. 0. 0. ]
[ -0. 0. -0. ]
[ -0. -0. 0. ]
[ -0. 0. -0. ]
[ -0. 0. 0. ]
[ -0. 0. 0. ]
[ -0. 0. -0. ]
[ -0. 0. 0. ]
[ 0. -0. -0. ]
[ -0. 0. -0. ]
[ -0. 0. 0. ]
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[ -0. 0. 0. ]
[ -0. 0. -0. ]
[ -0. 0. 0. ]
[ -0. 0. 0. ]
[ -0. 0. 0. ]
[ 0. -0. 0. ]
[ -0. 0. -0. ]
[ 0. 0. 0. ]
[ -0. 0. 0. ]
[ 0. 0. -0. ]
[ 0. 0. -0. ]
[ -0. 0. 0. ]
[ -0. 0. -0. ]
[ 0. 0. 0. ]
[ -0. -0. 0. ]
[ -0. -0. 0. ]
[ 0. 0. -0. ]
[ 0. -0. -0. ]
[ -0. 0. 0. ]
[ 16.58 1.84 3.68]]

The non-zero cells correspond to cells with prescribed flows or cells with prescribed heads, for which the netto
inflows are computed using all computed and prescribed heads.

In [10]: plt.figure(); plt.title('Q of cells in top layer [m3/d]')
plt.imshow(Out.Q[0, :, :], interpolation='None')
plt.colorbar()

plt.figure(); plt.title('Q of cells in second layer [m3/d]')
plt.imshow(Out.Q[1, :, :], interpolation='None')
plt.colorbar()

plt.figure(); plt.title('Q of cells in bottom layer with well [m3/d]')
plt.imshow(Out.Q[1, :, :], interpolation='None')
plt.colorbar()

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Out[10]: <matplotlib.colorbar.Colorbar at 0x10f2e9748>

Notice:

• that the coordinates are the cell numbers, the model is (79, 79, 3).

• the colorbars are different for each figure due to aut-selection.

• the flows in the 3rd layer with the well varies indeed between -1200 ( well extraction) and 0

• Further only the lower boundary is colored, i.e.non-zero, which is due to the fact that the heads are prescribed
along that boundary and, therefore, the flows are computed. Positive values mean water is flowing from the
outside world into the model.

• The zone with inactive cells are not visible, because the flow in those cells are zero as is the case for other
cells with no prescribed flows or heads.
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Conclusion

We have extended the 3D steady state finite difference model to not only compute the heads but also the flows
between the cells and the net inflow of the cells. The latter are for the computed heads as well as for the prescribed
heads. Inactive cells will have a head NaN (Not a Number) and will have flow zero.

We also now have the convenience function to extract the flows at the center of all cells for visualization using the
matplotlib function quiver().

In [ ]:
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CHAPTER 6

A Grid class to deal with any finite difference model grid

Prof. dr.ir.T.N.Olsthoorn

Heemstede, Sept. 2016, 24 May 2017

Using a Grid class to handle spatial information regarding the grid

As we saw we often have to compute values of the grid, like the xm, dx, Nx, Ny, shape etc. A much better, more
convenient and far less error-prone method of dealing with anything that has to do with the spacial dimensions of
the finite difference grid is to define a Grid class, whose instances are created with the grid coordinates like so

gr = Grid(x, y, z)

after which any spatial information can be obtained from the actual Grid instanceuse, called gr in this example.

Requesting values then work like this:

gr.Nx # int, len(x)-1
gr.shape # tuple (Nt, Nx, Nz)
gr.xm # ndarray, (len(x)-1
gr.Xm # ndarray, (Ny, Nx) of x-coordinates of cell centers
gr.XM # ndarray, (Nz, Ny, Nx) of x-coordinates of cell centers
gr.YM # ndarray, (Nz, Ny, Nx) of y-coordinates of cell centers
gr.xm[3:10] # indexing gr.xm
gr.shape # tuple, (Nz, Ny, Nx)
gr.area # scalar, total area of the model
gr.Area # ndarray, (Ny, Nx)
gr.volume # scalar total volume of the model
gr.Volume # ndarray, (Nz, Ny, Nx)

A large number of spacial or grid-specific variables, in fact, anything that can be computed from the coordinates
can then be obtained.

The Grid class will take care of error checking and house-keeping. It can even be told to interpret the grid as
axially symmetric

gr = Grid(x, y, z, axial=True)

It can guarantee a minimum layer thickness like so
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gr = Grid(x, y, z, min_dz=0.001)

No matter if z used to invoke the Grid was specified as a vector telling the elevation of the tops and bottoms of
uniform layers, or if z is a full-fledged 3D ndarray telling the top and bottom of all cells, Grid will handle it, in
any case yielding a full 3D array of tops and bottoms when requested

gr.Z # full 3D array: shape (Ny, Nx, Nz+1)

and any other like grid related quantities that one may think of.

All grid related information is then contained in the grid object, where the z needs not be limited to a vector but
may be a full 3D array of the tops and bottoms of all cells, so that each cell column can have elevations different
from its neighbors. This approach is definitely much more flexible. Also, the grid can carry out all necessary error
checking behing the scene which is effective as well.

The Grid class also has methods,like

A = gr.const(v)

This generates a ndarray of the size of the model with all values v if v is a scalar or with the values cells in layer
i the value v[i] if v is a vector of length gr.Nz.

gr.plot(linespec)

will plot itself using the specified linespec, i.e. combination of color and linetype like used in matplotilb.
plot.

Additionally, other functions like fdm3 can be adapted to simply accept a Grid object as input instead of indi-
vidual x, y and z coordinates. This requires less preparation and less clutting insize fdm3, while error checking
then is delegated to the Grid object.

You can learn about the Grid class by introspection or by simply loading it in an editor and studying how it was
implemented. Simply typing

Grid?

Provides the help from its docstring.

Grid-adapted model fdm3

The module fdm_b of the previous chapter contains the functions unique(), quivdata() and fdm3. This
model is copied below but only the functions fdm3 and quivdata have been adapted to deal with the grid object
for its grid information.

The new module will be save as fdm_c.py

In [1]: %%writefile fdm_c.py

import numpy as np
import pdb
import scipy.sparse as sp
from scipy.sparse.linalg import spsolve # to use its short name
from collections import namedtuple

class InputError(Exception):
pass

def quivdata(Out, gr, iz=0):
"""Returns coordinates and velocity components to show velocity with quiver

Compute arrays to display velocity vectors using matplotlib's quiver.
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The quiver is always drawn in the xy-plane for a specific layer. Default iz=0

Parameters
----------
`Out` : namedtuple holding arrays `Qx`, `Qy`, `Qz` as defined in `fdm3`

`Qx` : ndarray, shape: (Nz, Ny, Nx-1), [L3/T]
Interfacial flows in finite difference model in x-direction from `fdm3'

`Qy` : ndarray, shape: (Nz, Ny-1, Nx), [L3/T]
Interfacial flows in finite difference model in y-direction from `fdm3`

`Qz` : ndarray, shape: (Nz-1, Ny, Nx), [L3/T]
Interfacial flows in finite difference model in z-direction from `fdm3`

`gr` : `grid_object` generated by Grid
`iz` : int [-]

iz is the number of the layer for which the data are requested,
and all output arrays will be 2D for that layer.
if iz==None, then all outputs will be full 3D arrays and cover all layers
simultaneously

Returns
-------
`Xm` : ndarray, shape: (Nz, Ny, Nx), [L]

x-coordinates of cell centers
`Ym` : ndarray, shape: (Nz, Ny, Nx), [L]

y-coodinates of cell centers
`ZM` : ndarray, shape: (Nz, Ny, Nx), [L]

`z`-coordinates at cell centers
`U` : ndarray, shape: (Nz, Ny, Nx), [L3/d]

Flow in `x`-direction at cell centers
`V` : ndarray, shape: (Nz, Ny, Nx), [L3/T]

Flow in `y`-direction at cell centers
`W` : ndarray, shape: (Nz, Ny, Nx), [L3/T]

Flow in `z`-direction at cell centers.

"""

X, Y = np.meshgrid(gr.xm, gr.ym) # coordinates of cell centers

shp = (gr.Ny, gr.Nx) # 2D tuple to select a single layer

# Flows at cell centers
U = np.concatenate((Out.Qx[iz, :, 0].reshape((1, gr.Ny, 1)), \

0.5 * (Out.Qx[iz, :, :-1].reshape((1, gr.Ny, gr.Nx-2)) +\
Out.Qx[iz, :, 1: ].reshape((1, gr.Ny, gr.Nx-2))), \

Out.Qx[iz, :, -1].reshape((1, gr.Ny, 1))), axis=2).reshape(shp)
V = np.concatenate((Out.Qy[iz, 0, :].reshape((1, 1, gr.Nx)), \

0.5 * (Out.Qy[iz, :-1, :].reshape((1, gr.Ny-2, gr.Nx)) +\
Out.Qy[iz, 1:, :].reshape((1, gr.Ny-2, gr.Nx))), \

Out.Qy[iz, -1, :].reshape((1, 1, gr.Nx))), axis=1).reshape(shp)
return X, Y, U, V

def unique(x, tol=0.0001):
"""return sorted unique values of x, keeping ascending or descending direction"""
if x[0]>x[-1]: # vector is reversed

x = np.sort(x)[::-1] # sort and reverse
return x[np.hstack((np.diff(x) < -tol, True))]

else:
x = np.sort(x)
return x[np.hstack((np.diff(x) > +tol, True))]

def fdm3(gr, kx, ky, kz, FQ, HI, IBOUND):
'''Steady state 3D Finite Difference Model returning computed heads and flows.
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Heads and flows are returned as 3D arrays as specified under output parmeters.

Parameters
----------
'gr' : `grid_object`, generated by gr = Grid(x, y, z, ..)
`kx`, `ky`, `kz` : ndarray, shape: (Nz, Ny, Nx), [L/T]

hydraulic conductivities along the three axes, 3D arrays.
`FQ` : ndarray, shape: (Nz, Ny, Nx), [L3/T]

prescrived cell flows (injection positive, zero of no inflow/outflow)
`IH` : ndarray, shape: (Nz, Ny, Nx), [L]

initial heads. `IH` has the prescribed heads for the cells with prescribed head.
`IBOUND` : ndarray, shape: (Nz, Ny, Nx) of int

boundary array like in MODFLOW with values denoting

* IBOUND>0 the head in the corresponding cells will be computed

* IBOUND=0 cells are inactive, will be given value NaN

* IBOUND<0 coresponding cells have prescribed head

outputs
-------
`Out` : namedtuple containing heads and flows:

`Out.Phi` : ndarray, shape: (Nz, Ny, Nx), [L3/T]
computed heads. Inactive cells will have NaNs

`Out.Q` : ndarray, shape: (Nz, Ny, Nx), [L3/T]
net inflow in all cells, inactive cells have 0

`Out.Qx : ndarray, shape: (Nz, Ny, Nx-1), [L3/T]
intercell flows in x-direction (parallel to the rows)

`Out.Qy` : ndarray, shape: (Nz, Ny-1, Nx), [L3/T]
intercell flows in y-direction (parallel to the columns)

`Out.Qz` : ndarray, shape: (Nz-1, Ny, Nx), [L3/T]
intercell flows in z-direction (vertially upward postitive)

the 3D array with the final heads with `NaN` at inactive cells.

TO 160905
'''

# define the named tuple to hold all the output of the model fdm3
Out = namedtuple('Out',['Phi', 'Q', 'Qx', 'Qy', 'Qz'])
Out.__doc__ = """fdm3 output, <namedtuple>, containing fields Phi, Qx, Qy and Qz\n \

Use Out.Phi, Out.Q, Out.Qx, Out.Qy and Out.Qz"""

if kx.shape != gr.shape:
raise AssertionError("shape of kx {0} differs from that of model {1}".format(kx.shape,SHP))

if ky.shape != gr.shape:
raise AssertionError("shape of ky {0} differs from that of model {1}".format(ky.shape,SHP))

if kz.shape != gr.shape:
raise AssertionError("shape of kz {0} differs from that of model {1}".format(kz.shape,SHP))

active = (IBOUND > 0).reshape(gr.Nod,) # boolean vector denoting the active cells
inact = (IBOUND ==0).reshape(gr.Nod,) # boolean vector denoting inacive cells
fxhd = (IBOUND < 0).reshape(gr.Nod,) # boolean vector denoting fixed-head cells

# reshaping shorthands
rx = lambda a : np.reshape(a, (1, 1, gr.Nx))
ry = lambda a : np.reshape(a, (1, gr.Ny, 1))
rz = lambda a : np.reshape(a, (gr.Nz, 1, 1))

# half cell flow resistances
Rx = 0.5 * rx(gr.dx) / (ry(gr.dy) * rz(gr.dz)) / kx
Ry = 0.5 * ry(gr.dy) / (rz(gr.dz) * rx(gr.dx)) / ky
Rz = 0.5 * rz(gr.dz) / (rx(gr.dx) * ry(gr.dy)) / kz

# set flow resistance in inactive cells to infinite
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Rx = Rx.reshape(gr.Nod,); Rx[inact] = np.Inf; Rx=Rx.reshape(gr.shape)
Ry = Ry.reshape(gr.Nod,); Ry[inact] = np.Inf; Ry=Ry.reshape(gr.shape)
Rz = Rz.reshape(gr.Nod,); Rz[inact] = np.Inf; Rz=Rz.reshape(gr.shape)

# conductances between adjacent cells
Cx = 1 / (Rx[:, :, :-1] + Rx[:, :, 1:])
Cy = 1 / (Ry[:, :-1, :] + Ry[:, 1:, :])
Cz = 1 / (Rz[:-1, :, :] + Rz[1:, :, :])

IE = gr.NOD[:, :, 1:] # east neighbor cell numbers
IW = gr.NOD[:, :, :-1] # west neighbor cell numbers
IN = gr.NOD[:, :-1, :] # north neighbor cell numbers
IS = gr.NOD[:, 1:, :] # south neighbor cell numbers
IT = gr.NOD[:-1, :, :] # top neighbor cell numbers
IB = gr.NOD[1:, :, :] # bottom neighbor cell numbers

R = lambda x : x.ravel() # generate anonymous function R(x) as shorthand for x.ravel()

# notice the call csc_matrix( (data, (rowind, coind) ), (M,N)) tuple within tupple
# also notice that Cij = negative but that Cii will be postive, namely -sum(Cij)
A = sp.csc_matrix(( -np.concatenate(( R(Cx), R(Cx), R(Cy), R(Cy), R(Cz), R(Cz)) ),\

(np.concatenate(( R(IE), R(IW), R(IN), R(IS), R(IB), R(IT)) ),\
np.concatenate(( R(IW), R(IE), R(IS), R(IN), R(IT), R(IB)) ),\

)),(gr.Nod,gr.Nod))

# to use the vector of diagonal values in a call of sp.diags() we need to have it aa a
# standard nondimensional numpy vector.
# To get this:
# - first turn the matrix obtained by A.sum(axis=1) into a np.array by np.array( .. )
# - then take the whole column to loose the array orientation (to get a dimensionless numpy vector)
adiag = np.array(-A.sum(axis=1))[:,0]

Adiag = sp.diags(adiag) # diagonal matrix with a[i,i]

RHS = FQ.reshape((gr.Nod,1)) - A[:,fxhd].dot(HI.reshape((gr.Nod,1))[fxhd]) # Right-hand side vector

Out.Phi = HI.flatten() # allocate space to store heads

Out.Phi[active] = spsolve( (A+Adiag)[active][:,active] ,RHS[active] ) # solve heads at active locations

# net cell inflow
Out.Q = (A+Adiag).dot(Out.Phi).reshape(gr.shape)

# set inactive cells to NaN
Out.Phi[inact] = np.NaN # put NaN at inactive locations

# reshape Phi to shape of grid
Out.Phi = Out.Phi.reshape(gr.shape)

#Flows across cell faces
Out.Qx = -np.diff( Out.Phi, axis=2) * Cx
Out.Qy = +np.diff( Out.Phi, axis=1) * Cy
Out.Qz = +np.diff( Out.Phi, axis=0) * Cz

return Out # all outputs in a named tuple for easy access

Overwriting fdm_c.py

In [2]: import fdm_c
from importlib import reload
reload(fdm_c)

Out[2]: <module 'fdm_c' from '/Users/Theo/GRWMODELS/Python_projects/FDM_course/fdm_c.py'>
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Example

We use the same 3D example as before but now apply the grid object.

In [9]: # Make sure that your modules like grid are in the sys.path
import sys

path2modules = './modules/'

if not path2modules in sys.path:
sys.path.append(path2modules)

In [11]: reload(mfgrid)

Out[11]: <module 'mfgrid' from '/Users/Theo/GRWMODELS/Python_projects/FDM_course/mfgrid.py'>

In [12]: gr.z

Out[12]: array([ 20., 0., -10., -100.])

In [13]: %matplotlib notebook
import matplotlib.pyplot as plt # combines namespace of numpy and pyplot

import numpy as np
import mfgrid
Grid = mfgrid.Grid

# specify a rectangular grid
x = np.arange(-1000., 1000., 25.)
y = np.arange( 1000., -1000., -25.)
z = np.array([20, 0 ,-10, -100.])

gr = Grid(x, y, z) # generating a grid object for this model

k = 10.0 # m/d uniform conductivity
kx = k * gr.const(k) # using gr.const(value) to generate a full 3D array of the correct shape
ky = k * gr.const(k)
kz = k * gr.const(k)

IBOUND = gr.const(1)
IBOUND[:, -1, :] = -1 # last row of model heads are prescribed
IBOUND[:, 40:45, 20:70]=0 # inactive

FQ = gr.const(0.) # all flows zero. Note SHP is the shape of the model grid
FQ[2, 30, 25] = -1200 # extraction in this cell

HI = gr.const(0.)

Out = fdm_c.fdm3(gr, kx, ky, kz, FQ, HI, IBOUND)

layer = 2 # contours for this layer
nc = 50 # number of contours in total

plt.xlabel('x [m]')
plt.ylabel('y [m]')
plt.title("Contours (%d in total) of the head in layer %d with inactive section" % (nc, layer))
plt.contour(gr.xm, gr.ym, Out.Phi[:,:,layer], nc) # using gr here also

#plt.quiver(X, Y, U, V) # show velocity vectors
#X, Y, U, V = fdm_c.quivdata(Out, gr, iz=0) # use function in fdm_c
X, Y, U, V = gr.quivdata(Out, iz=0) # use method in Grid
plt.quiver(X, Y, U, V)

<IPython.core.display.Javascript object>
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<IPython.core.display.HTML object>

Out[13]: <matplotlib.quiver.Quiver at 0x10eb88048>

Conclusion

Managing and providing spatial information with respect to the grid of our finite difference models can be effec-
tively delegated to a Grid object, which is a instance of the Grid class.

We have adapted our finite differnce model fmd3 and the function quivdata to make use of the grid. We then
used the grid to more effectively setup a the same model as before and handle its spatial informaion.

We finally applied the adapte function quivdata to show the quiver. We can alternatively use this function or the
method quivdata implemented in the Grid class.

In [ ]:
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CHAPTER 7

Axially symmetric modeling

Prof. dr.ir. T.N.Olsthoorn

Heemstede, Okt. 2016, 24 May 2017

Theory

In [ ]:

In [2]: myModules = '/Users/Theo/GRWMODELS/python/modules/fdm/'

import sys
if not myModules in sys.path:

sys.path.append(myModules)

import mfgrid

def inpoly(...)

Often it is useful to simulate groundwater flow in an axial symmetric using only the coordinates x and z, where
x stands for the radius r and y is not used. The thickness in y direction is no longer constant but varies with x as
𝑦 = 2𝜋𝑥2. Note that here 𝑥 > 0. Columns in the grid are now, in fact, cylinders with thickness equal to that of
the corresponding column.

To alow this, we have to adapt the computation of the cell resistances. Because in axial flow we have

$:raw-latex:Delta ‘:raw-latex:phi = :raw-latex:frac {Q} {2 pi k_x Delta z}‘ :raw-latex:‘\ln ‘:raw-latex:‘frac
{r_1} {r_2}‘ $

The resistance $R_x = :raw-latex:‘\frac {\Delta \phi} {Q}‘ = :raw-latex:‘\frac ‘1 {2 :raw-latex:‘pi k_x :raw-
latex:Delta z} :raw-latex:ln :raw-latex:frac {r_2} {r_1}‘ $, with 𝑟2 > 𝑟1

We can thus write out the resistance against horitonzal axial flow between the innermost cell face at 𝑥 = 𝑟1 and
the cell center at 𝑥 = 𝑟𝑚 as well as the resistance between the cell center and the outer most cell face at 𝑥 = 𝑟2.

Rx1 = 1 / (2 * pi * kx * dz) * log(xm / x[:-1])
Rx2 = 1 / (2 * pi * kx * dz) * log(x[1:] / xm)

In vertical direction we have the resistance due to vertical flow through the rings

𝑅𝑧 = Δ𝑧
𝑘𝑧𝜋(𝑟22−𝑟21)
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These resistances thus become:

Rz = dz / (kz * pi * (x[1:]**2 - x[:-1]**2))

And the cell conductances now become

Cx = 1 / (Rx1[1:] + Rx2[:-1])
Cy = np.zeros(sz)
Cz = 0.5 / (Rz[:,:,1:] + Rz[:,:,:-1])

Notice that the conductance in the y direction is left in and set to zeros. This implies that there will be no flow
between adjacent model rows. When we now use a model with more than one row, we can look at it as a set of
simultaneously computed independent axisymmetric models, because these models all share the same distance
from zero by their x-coordinate and have no mutual interaction in the y-direction. Different axisymmetric models
can thus be simulated simultaneously, which may be useful for comparisons, sensitivity compuatations and for
calibration.

These are the only changes we have to make to convert our 3D groundwater model to an axisymmetric model.

We can build this into our existing model and use a switch to tell the model to run the rectangular or the axisym-
metric case.

In Python this is easily done using a named input parameter axial=false.

The call would then look as follows

Phi = fdm3(x, y, z, kx, ky, kz, FQ, HI, IBOUND, axial=true)

The y coordinate vector is irrelevant here. It can be left empty or set to any value, e.g. none. Whatever it is, it
will be ignored in the axisymmetrical case. Notice that the size of the model is obtained from the IBOUND array.

Implementation; the adepted module to include axial symmetry

In [9]: %%writefile fdm_d.py

import numpy as np
import pdb
import scipy.sparse as sp
from scipy.sparse.linalg import spsolve # to use its short name
from collections import namedtuple

class InputError(Exception):
pass

def quivdata(Out, gr, iz=0):
"""Returns coordinates and velocity components to show velocity with quiver

Compute arrays to display velocity vectors using matplotlib's quiver.
The quiver is always drawn in the xy-plane for a specific layer. Default iz=0

Parameters
----------
`Out` : namedtuple holding arrays `Qx`, `Qy`, `Qz` as defined in `fdm3`

`Qx` : ndarray, shape: (Nz, Ny, Nx-1), [L3/T]
Interfacial flows in finite difference model in x-direction from `fdm3'

`Qy` : ndarray, shape: (Nz, Ny-1, Nx), [L3/T]
Interfacial flows in finite difference model in y-direction from `fdm3`

`Qz` : ndarray, shape: (Nz-1, Ny, Nx), [L3/T]
Interfacial flows in finite difference model in z-direction from `fdm3`

`gr` : `grid_object` generated by Grid
`iz` : int [-]

iz is the number of the layer for which the data are requested,
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and all output arrays will be 2D for that layer.
if iz==None, then all outputs will be full 3D arrays and cover all layers
simultaneously

Returns
-------
`Xm` : ndarray, shape: (Nz, Ny, Nx), [L]

x-coordinates of cell centers
`Ym` : ndarray, shape: (Nz, Ny, Nx), [L]

y-coodinates of cell centers
`ZM` : ndarray, shape: (Nz, Ny, Nx), [L]

`z`-coordinates at cell centers
`U` : ndarray, shape: (Nz, Ny, Nx), [L3/d]

Flow in `x`-direction at cell centers
`V` : ndarray, shape: (Nz, Ny, Nx), [L3/T]

Flow in `y`-direction at cell centers
`W` : ndarray, shape: (Nz, Ny, Nx), [L3/T]

Flow in `z`-direction at cell centers.

"""

X, Y = np.meshgrid(gr.xm, gr.ym) # coordinates of cell centers

shp = (gr.Ny, gr.Nx) # 2D tuple to select a single layer

# Flows at cell centers
U = np.concatenate((Out.Qx[iz, :, 0].reshape((1, gr.Ny, 1)), \

0.5 * (Out.Qx[iz, :, :-1].reshape((1, gr.Ny, gr.Nx-2)) +\
Out.Qx[iz, :, 1: ].reshape((1, gr.Ny, gr.Nx-2))), \

Out.Qx[iz, :, -1].reshape((1, gr.Ny, 1))), axis=2).reshape(shp)
V = np.concatenate((Out.Qy[iz, 0, :].reshape((1, 1, gr.Nx)), \

0.5 * (Out.Qy[iz, :-1, :].reshape((1, gr.Ny-2, gr.Nx)) +\
Out.Qy[iz, 1:, :].reshape((1, gr.Ny-2, gr.Nx))), \

Out.Qy[iz, -1, :].reshape((1, 1, gr.Nx))), axis=1).reshape(shp)
return X, Y, U, V

def unique(x, tol=0.0001):
"""return sorted unique values of x, keeping ascending or descending direction"""
if x[0]>x[-1]: # vector is reversed

x = np.sort(x)[::-1] # sort and reverse
return x[np.hstack((np.diff(x) < -tol, True))]

else:
x = np.sort(x)
return x[np.hstack((np.diff(x) > +tol, True))]

def fdm3(gr, kx, ky, kz, FQ, HI, IBOUND):
'''Steady state 3D Finite Difference Model returning computed heads and flows.

Heads and flows are returned as 3D arrays as specified under output parmeters.

Parameters
----------
'gr' : `grid_object`, generated by gr = Grid(x, y, z, ..)

if `gr.axial`==True, then the model is run in axially symmetric model
`kx`, `ky`, `kz` : ndarray, shape: (Nz, Ny, Nx), [L/T]

hydraulic conductivities along the three axes, 3D arrays.
`FQ` : ndarray, shape: (Nz, Ny, Nx), [L3/T]

prescrived cell flows (injection positive, zero of no inflow/outflow)
`IH` : ndarray, shape: (Nz, Ny, Nx), [L]

initial heads. `IH` has the prescribed heads for the cells with prescribed head.
`IBOUND` : ndarray, shape: (Nz, Ny, Nx) of int
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boundary array like in MODFLOW with values denoting

* IBOUND>0 the head in the corresponding cells will be computed

* IBOUND=0 cells are inactive, will be given value NaN

* IBOUND<0 coresponding cells have prescribed head

outputs
-------
`Out` : namedtuple containing heads and flows:

`Out.Phi` : ndarray, shape: (Nz, Ny, Nx), [L3/T]
computed heads. Inactive cells will have NaNs

`Out.Q` : ndarray, shape: (Nz, Ny, Nx), [L3/T]
net inflow in all cells, inactive cells have 0

`Out.Qx : ndarray, shape: (Nz, Ny, Nx-1), [L3/T]
intercell flows in x-direction (parallel to the rows)

`Out.Qy` : ndarray, shape: (Nz, Ny-1, Nx), [L3/T]
intercell flows in y-direction (parallel to the columns)

`Out.Qz` : ndarray, shape: (Nz-1, Ny, Nx), [L3/T]
intercell flows in z-direction (vertially upward postitive)

the 3D array with the final heads with `NaN` at inactive cells.

TO 160905
'''

import pdb

# define the named tuple to hold all the output of the model fdm3
Out = namedtuple('Out',['Phi', 'Q', 'Qx', 'Qy', 'Qz'])
Out.__doc__ = """fdm3 output, <namedtuple>, containing fields Phi, Qx, Qy and Qz\n \

Use Out.Phi, Out.Q, Out.Qx, Out.Qy and Out.Qz"""

if gr.axial:
print('Running in axial mode, y-values are ignored.')

if kx.shape != gr.shape:
raise AssertionError("shape of kx {0} differs from that of model {1}".format(kx.shape,SHP))

if ky.shape != gr.shape:
raise AssertionError("shape of ky {0} differs from that of model {1}".format(ky.shape,SHP))

if kz.shape != gr.shape:
raise AssertionError("shape of kz {0} differs from that of model {1}".format(kz.shape,SHP))

active = (IBOUND>0).reshape(gr.Nod,) # boolean vector denoting the active cells
inact = (IBOUND==0).reshape(gr.Nod,) # boolean vector denoting inacive cells
fxhd = (IBOUND<0).reshape(gr.Nod,) # boolean vector denoting fixed-head cells

# reshaping shorthands
dx = np.reshape(gr.dx, (1, 1, gr.Nx))
dy = np.reshape(gr.dy, (1, gr.Ny, 1))

# half cell flow resistances
if not gr.axial:

Rx1 = 0.5 * dx / ( dy * gr.DZ) / kx
Rx2 = Rx1
Ry1 = 0.5 * dy / (gr.DZ * dx) / ky
Rz1 = 0.5 * gr.DZ / ( dx * dy) / kz

else:
min_dx = 0.000001
x = gr.x; x[0] = max(0.1 * x[1], x[0]) # preventd division by zero x[0]
Rx1 = 1 / (2 * np.pi * kx * gr.DZ) * np.log(x[1:] / gr.xm).reshape((1, 1, gr.Nx))
Rx2 = 1 / (2 * np.pi * kx * gr.DZ) * np.log(gr.xm / x[:-1]).reshape((1, 1, gr.Nx))
Ry1 = np.inf * np.ones(gr.shape)
Rz1 = 0.5 * gr.DZ / (np.pi * (gr.x[1:]**2 - gr.x[:-1]**2).reshape((1, 1, gr.Nx)) * kz)

# set flow resistance in inactive cells to infinite
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Rx1[inact.reshape(gr.shape)] = np.inf
Rx2[inact.reshape(gr.shape)] = np.inf
Ry1[inact.reshape(gr.shape)] = np.inf
Ry2 = Ry1
Rz1[inact.reshape(gr.shape)] = np.inf
Rz2 = Rz1

# conductances between adjacent cells
Cx = 1 / (Rx1[ :, :, 1:] + Rx2[:, :, :-1])
Cy = 1 / (Ry1[ :, :-1,:] + Ry2[:, 1:, :])
Cz = 1 / (Rz1[:-1, :, :] + Rz2[1:, :, :])

#pdb.set_trace()

IE = gr.NOD[:, :, 1:] # east neighbor cell numbers
IW = gr.NOD[:, :, :-1] # west neighbor cell numbers
IN = gr.NOD[:, :-1, :] # north neighbor cell numbers
IS = gr.NOD[:, 1:, :] # south neighbor cell numbers
IT = gr.NOD[:-1, :, :] # top neighbor cell numbers
IB = gr.NOD[1:, :, :] # bottom neighbor cell numbers

R = lambda x : x.ravel() # generate anonymous function R(x) as shorthand for x.ravel()

# notice the call csc_matrix( (data, (rowind, coind) ), (M,N)) tuple within tupple
# also notice that Cij = negative but that Cii will be postive, namely -sum(Cij)
A = sp.csc_matrix(( -np.concatenate(( R(Cx), R(Cx), R(Cy), R(Cy), R(Cz), R(Cz)) ),\

(np.concatenate(( R(IE), R(IW), R(IN), R(IS), R(IB), R(IT)) ),\
np.concatenate(( R(IW), R(IE), R(IS), R(IN), R(IT), R(IB)) ),\

)),(gr.Nod,gr.Nod))

# to use the vector of diagonal values in a call of sp.diags() we need to have it aa a
# standard nondimensional numpy vector.
# To get this:
# - first turn the matrix obtained by A.sum(axis=1) into a np.array by np.array( .. )
# - then take the whole column to loose the array orientation (to get a dimensionless numpy vector)
adiag = np.array(-A.sum(axis=1))[:,0]

Adiag = sp.diags(adiag) # diagonal matrix with a[i,i]

#pdb.set_trace()

RHS = FQ.reshape((gr.Nod,1)) - A[:,fxhd].dot(HI.reshape((gr.Nod,1))[fxhd]) # Right-hand side vector

Out.Phi = HI.flatten() # allocate space to store heads

Out.Phi[active] = spsolve( (A+Adiag)[active][:,active] ,RHS[active] ) # solve heads at active locations

# net cell inflow
Out.Q = (A+Adiag).dot(Out.Phi).reshape(gr.shape)

# reshape Phi to shape of grid
Out.Phi = Out.Phi.reshape(gr.shape)

#Flows across cell faces
Out.Qx = -np.diff( Out.Phi, axis=2) * Cx
Out.Qy = +np.diff( Out.Phi, axis=1) * Cy
Out.Qz = +np.diff( Out.Phi, axis=0) * Cz

# set inactive cells to NaN
Out.Phi[inact.reshape(gr.shape)] = np.NaN # put NaN at inactive locations

return Out # all outputs in a named tuple for easy access
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Overwriting fdm_d.py

Examples

Here we’ll work out a few axially symmetric examples to verify this model using analytical solutions.

We will also compute the darwdown in a multi-layer aquifer system.

We’ll keep truly axially symmetric 3D flow for the next chapter, after we introduced the stream function.

In [10]: %matplotlib notebook

import numpy as np
import matplotlib.pyplot as plt
from importlib import reload
import fdm_d # from current directory
import mfgrid # path has been added to sys.path above

# when we have been editing files, make sure to reload
reload(fdm_d)
reload(mfgrid)

def inpoly(...)

Out[10]: <module 'mfgrid' from '/Users/Theo/GRWMODELS/python/modules/fdm/mfgrid.py'>

Circular island

The first example is flow in a circular island with recharge, like we did in a previous chapter using a large-scale
2D or 3D model.

We use a single layer, which, in axially symmetric cases becomes a single row of cells, in which x should be read
as r, the distance to the center of the island.

In [12]: # easily switch between linear and axisymmetrical flow
axial = True

# m/d, recharge rate
rch = 0.01

# The aquifer
z0 = 0. # m, ground surface elevaton
D = 100. # m, aquifer thickness

k0 = 10. # m/d, conductivity
kD = k0 * D # m2/d, transmissivity, only used in the analytical solution

# coordinates
R = 750.0 # m, radius of the island

# grid coordinates
# R-0.1 and R+0.1 added to x-coordinates to allow head boundary at almost exactly x==R
x = np.hstack([0., R-0.1, R+0.1, np.logspace(0 , np.log10(3*R), 100)])
y = np.array([-0.5, 0.5]) # is ignored in axially symmetric flow
z = z0 - np.array([0, D])

# grid
gr = mfgrid.Grid(x, y, z, axial=axial) # generate a grid object and tell it's axially symmmetric

# required model arrays
k = gr.const(k0) # m/d, uniform conductivity array of correct size
FQ = rch * gr.Area.reshape(gr.shape) # m3/d, cell inflows (gr.Area knows about axial)
IH = gr.const(0.) # m, initial heads
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IBOUND = np.ones(gr.shape); IBOUND[gr.XM>R] = -1 # boundary array, all r>R fixed heads

# run the model, return Out containing heads and flows
Out = fdm_d.fdm3(gr, k, k, k, FQ, IH, IBOUND)

# tells which cells are x<=R (in the island), used in analytical solutions
Island = np.logical_and(gr.xm>=-R, gr.xm<=R)

# plot, set up plot
plt.figure()

# plot numerical results
plt.plot(gr.xm, Out.Phi[0,0, :], 'bo', label='Numeric')

# works for both axially symmetric and linear flow
# sets correct title and plots analytical solution
if axial:

plt.xlabel('r [m]')
plt.title('Circular island with radius R={0} m and recharge N = {1} m/d'.format(R,rch))
plt.plot(gr.xm[Island], rch/(4 * kD) * (R**2 - gr.xm[Island] ** 2),'r-', label='Analytic')

else:
plt.xlabel('x [m]')
plt.title('Cross section with fixed head beyond x={0} m and recharge N = {1}'.format(R,rch))
plt.plot(gr.xm[Island], rch/(2 * kD) * (R**2 - gr.xm[Island] ** 2),'r-', label='Analytic')

plt.legend()

Running in axial mode, y-values are ignored.

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Out[12]: <matplotlib.legend.Legend at 0x111493710>

As can be seen, the numerical and analyticl solutions agree. By changing the variable axial to False or True one
can choose between a flat cross sectional model and an axisymmetrical model. The correct axis and analytical
solutions will then be shown in the figure. The burden of changing variable for both cases is completely carried
by the grid object and the way in which the conductances are computed in fdm3.

To show that the water balance matches we compute below the total flow into the model.

In [13]: print('The total net Q into the model should be (well, almost) zero: Qtotal = {} m3/d'.format(np.sum(Out.Q.ravel())))

The total net Q into the model should be (well, almost) zero: Qtotal = -2.9103830456733704e-11 m3/d

In [14]: if axial:
dim='m3/d'

else:
dim='m2/d'

print('The total net outflow should match the hand computed total recharge:')
print('By hand: rch * pi * R**2 = {1:8.5g} {0}'.format(dim, rch * np.pi * R**2))
print('Total model computed inflow: {1:8.5g} {0}'.format(dim, sum(Out.Q.ravel()[Out.Q.ravel()>0])))
print('Total model computed outflow: {1:8.5g} {0}'.format(dim, sum(Out.Q.ravel()[Out.Q.ravel()<0])))

The total net outflow should match the hand computed total recharge:
By hand: rch * pi * R**2 = 17671 m3/d
Total model computed inflow: 17676 m3/d
Total model computed outflow: -17676 m3/d

A well in a semi-confined aquifer

We can model semi-confined flow in a single aquifer with one layer for the confining unit on top and one or more
for the aquifer below. Because the analytical solutions for flow to wells do not consider vertical resistance within
the aquifer, it suffices to use a single layer for the aquifer to compare our model with the analytical solution.
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The steady-state flow to a well in a semi-confined aquifer is governed by

$ s = :raw-latex:‘\frac ‘Q {2 :raw-latex:‘pi kD} :raw-latex:frac { K_0 left( frac r lambda right) } { frac {r_0}
lambda K_1 left( frac {r_0} lambda right) }‘ $

where $ :raw-latex:‘\frac {r_0}‘ :raw-latex:‘\lambda ‘K\_1 :raw-latex:‘left‘( :raw-latex:‘\frac {r_0}‘ :raw-
latex:‘\lambda ‘:raw-latex:‘right‘) :raw-latex:‘\rightarrow ‘1 $ for $ r\_0 << :raw-latex:‘lambda ‘$.

With $ r_0 $ the radius of the well, $ :raw-latex:‘\lambda ‘= :raw-latex:‘sqrt {left( kDc right)}‘ $, c [T] is the
vertical hydraulic resistance of the confining unit and kD [L2/T] the transmissivity of the underlying aquifer.

In [15]: #aquifer
c = 250. # d, vertical hydraulic resistance of the confining unit
k1 = 20. # m/d, horizontal hydraulic conductivity of the aquifer
d = 10. # m, thickness of the confining unit
D = 50. # m, thickness of teh aquifer
k0 = 0.5 * d/c # m/d, vertical hydraulic conductivity of confining unit

# 0.5 is used because water in the model enters at center of layer, not at top
kD = k1 * D # m2/d, transmissivity of aquifer
lam = np.sqrt(kD * c) # characteristic or spreading length of the semi-confind aquifer system

Q = 1200 # m3/d, extraction by well (we use -Q for extraction in model)

r0 = 5.0 # m, radius of the well
z0 = 0 # m, ground elevation, top of confining unit
z = z0 - np.array([d+D, 0, d])
y = np.array([-0.5, 0.5]) # m, a one m thick model (ignored when axially symmetric)
x = np.hstack((0, 1.01*r0, np.logspace(np.log10(r0), np.log10(5*lam), 51)))
#x = np.hstack((0.99*r0, np.logspace(np.log10(r0), np.log10(5*lam), 51))) # inject exactly at r=r0

gr = mfgrid.Grid(x, y, z, axial=True)

k = gr.const(k1); k[0, : ,:] = k0
FQ = gr.const(0.); FQ[-1, :, 0] = -Q
FH = gr.const(0.)
IBOUND = gr.const(1); IBOUND[0, :, :] = -1

Out = fdm_d.fdm3(gr, k, k, k, FQ, FH, IBOUND)

# analytical stuff
import scipy
K0 = scipy.special.k0 # bessel function
K1 = scipy.special.k1 # bessel function
# analytical solution
fi = -Q/(2 * np.pi * kD ) * K0(gr.xm / lam) / ((r0/lam) * K1(r0/lam))

plt.figure()
plt.xlabel('r [m]')
plt.ylabel('head change [m]')
plt.title('Drawdown by well in semi-confined aquifer, $ r $ on linear scale')
plt.plot(gr.xm, fi, 'r', label='analytic')
plt.plot(gr.xm, Out.Phi[-1, 0,:], 'bo', label='numeric')
plt.legend()

plt.figure()
plt.xlabel('r [m]')
plt.ylabel('head change [m]')
plt.title('Drawdown by well in semi-confined aquifer, $ r $ on log scale')
plt.setp(plt.gca(), 'xscale','log')
plt.plot(gr.xm, fi, 'r', label='analytic')
plt.plot(gr.xm, Out.Phi[-1, 0, :], 'bo', label='numeric')
plt.legend()

Running in axial mode, y-values are ignored.

60 Chapter 7. Axially symmetric modeling



FD Modeling Course Groundwater Flow, Release 0.01

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Out[15]: <matplotlib.legend.Legend at 0x111dc2cc0>

The numerical and analytical solutions agree. Only the first point differs. This is because the flow was specified
in the center of the first cell (between r=0 and r=r0), instead of at the border of that cell, i.e. at exactly r=r0. We
can solve this in various ways. The best way is to make the first cell coordinates r0-delta and r0+delta, with delta
some small number, so that the water is injected almost exactly at r=r0. I leave that as an exercise.

Conclusion

We now have a flexible 3D steady-state finite difference model which can be used to solve fully 3D problems
as well as 2D problems and 1D problemns. It also can solve axisymmetrical problems, i.e. axisymmetical cross
sections. With this model one can also readily solve steady-state pumping tests in multilayer aquifers. But to show
the results of such simulations it is useful to not only show the heads but also the stream function, i.e. the stream
lines. This is the subject of the next chapter.
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CHAPTER 8

Stream lines

Prof. dr.ir. T.N.Olsthoorn

Heemstede, 21 Oct 2016, 24 May 2017

Stream lines

Streamlines are lines of constant stream-function value. This differs from flow paths, which we will tackle later on.
Flow lines of flow paths are lines that are followed by particles. Because in a dynamic model the flow conditions
will normally vary with time, such flow lines are not unique, i.e. particles injected at the same spot but at a
different time will follow different tracks and must be traced. Dit is not the case with streamlines. Streamlines (if
they exist) can be computed by contouring the stream function, without any tracing. However, the stream
function is only defined in 2D steady-sate flow without sources and sinks (and without leakage or recharge for that
matter). It is said that the flow must be 2D and divergence free, which can be mathematically expressed as

$ :raw-latex:‘\frac {\partial q_x} {\partial x}‘ + :raw-latex:‘\frac {\partial q_y} {\partial y}‘ = 0 $

Concrete sinks and source cause so-called branch-cuts in the stream function. In practice, these can be dealt with
in way that they will resamble vertical wells in the 2D image, which is often what they are.

Steamlines are especially useful in cross sections, either flat or axisymmetrical. This is because in such cross
sections flow tends to be essentially 2D and divergence of flow is virtually absent. Even in transient flow situations,
the divergence of fow due to elastic storage in a cross sectionis so small relative to the local specific discharge,
that it can be practically ingored, meaning that also in transient flow in cross sections the stream function may be
used, yielding a continuously changing streamline pattern along with the development of the flow, which, in turn
lends itself of animation.

Where the conditions are fulfilled (divergence free 2D flow), showing streamlines as contours of the stream func-
tion is efficient manner to show the flow in a quantitative way. The beauty and the power of the stream function
is that it provides a complete spacial picture of the actual flow. Given the function, the specific discharge at any
point in the system is known as well as the total discharge between any pair of arbitrarily chosen point. As a plus,
the stream function can readily be computed from the results of the finite difference model.

The stream function

The steam function is total discharge between a streamline taken as reference and any point in the model. And
a sream line is a line on which the stream function has the same value. Hence stream lines are contours of the
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stream function and the have a value, that of the stream function at the line.

One can draw an arbitrary line between the reference or zero streamline and such a point, and the total discharge
across this line is given by the value of the stream function. There is, of course, also a stream line through this
arbitrarily chosen point. And it follows that the discharge between this streamline and the reference stream line is
the same everywhere in the model. This is true for any pair of stream lines.

While the reference stream line, the one that we will give the stream function value zero, can be chosen arbitrarily,
we should taken one that we know beforehand. In practical modeling that is generally so for the bottom of our
model, when it is closed. And if it is not closed, but we know how much discharge enters the bottom we can select
the point to the left end of the bottom as zero and compute the stream function along the bottom before hand.
Hence chosing the bottom of our model to have a stream function value zero is most often a good choice.

Remember we’re dealing with cross sections. That is in practice we deal with the zx plane of our model.

Mathematically we can obtain the stream function, indicated by $ , :raw-latex:‘Psi ‘$, by integrating the horizontal
specific discharge from the bottom of our model upward to any elevation:

Ψ =

𝑧𝑚𝑎𝑥∫︁
𝑧𝑚𝑖𝑛

(𝑦) 𝑑𝑦

The finite differnce model yields among others the flows across the cell faces. So to obtain the total fow between
the bottom of the model and the top of the lowest layer, we just have the lowest layer of Qx. When we accumulate
Qx from the bottom of the model upwards we obtain the stream function values in all cell corners, and not in
the cell centers, of the cross section. The stream function for a cross section of a model can, therefore, be easily
computed from the infacial flows

Ψ =

𝑛∑︁
0

𝑄𝑥𝑖

Where $ Q_{x_i} $ is the interfacial flow in x-direction at some given x-coordinate, 0 the index for the bottom
plane of the model and n the index of plane n of the model.

Notice that the dimension of $ :raw-latex:‘\Psi ‘$ is [L2/T] for a flat cross section or layer and [L3/T] for an
axially symmetric cross section. When contouring the stream function $ :raw-latex:‘Psi ‘$, we should always
denote the difference between two adjacent contours, i.e. the stream lines, in the title together with its dimension.
With this, the flow in such a picture is fully determined by the stream line contours.

The implemenation follows next.

The stream function implemented

In [1]: ## This function is merged with the file fdm_d.py into fdm.py
# So import fdm.py to use it with fdm3

import numpy as np
def psi(Qx, row=0):

"""Returns stream function values in z-x plane for a given grid row.

The values are at the cell corners in an array of shape [Nz+1, Nx-1].
The stream function can be vertically contoured using gr.Zp and gr.Xp as
coordinates, where gr is an instance of the Grid class.

Arguments:
Qx --- the flow along the x-axis at the cell faces, excluding the outer

two plains. Qx is one of the fields in the named tuple returned
by fdm3.

row --- The row of the cross section (default 0).

It is assumed:
1) that there is no flow perpendicular to that row
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2) that there is no storage within the cross section
3) and no flow enters the model from below.

The stream function is computed by integrating the facial flows
from bottom to the top of the model.
The outer grid lines, i.e. x[0] and x[-1] are excluded, as they are not in Qx
The stream function will be zero along the bottom of the cross section.

"""
Psi = Qx[:, row, :] # Copy the section for which the stream line is to be computed.

# and transpose to get the [z,x] orientation in 2D
Psi = Psi[::-1,:].cumsum(axis=0)[::-1,:] # cumsum from the bottom
Psi = np.vstack((Psi, np.zeros(Psi[0,:].shape))) # add a row of zeros at the bottom
return Psi

The function expects a 3D array as Qx in from the finite difference model and the row number that will be consid-
erd the cross sectional plane for which the $ :raw-latex:‘Psi ‘$ is to be computed. It is the user’s responsibility to
make sure that the requiremenst for the stream function to make sense are fulfilled.

The function can also take a 2D array. But this option is seldom used, because in our finite difference framwork,
the model is always 3D, even when it only has one row. We always keep the z-direction vertical, thus preventing
a lot of confusion.

The function can be easily adapted to compute the stream function for planes along columns. But this option is
also seldom used, so it is left out.

Examples

Two examples will be worked out: a building pit which shows how detailed vertical flows are computed in a
practical case to optimized pumping. It also demonstrates how one can readily switch between flat and axially
symmetric cross section and it demonstrates the stream lines.

The second example shows the heads and stream lines in a confined aquifer with a partially penetrating screen that
extracts water. This model is also axisymmetric. It also compares the heads from the numeric models with those
from an analytical solution.

Smart pumping below a building pit: a flat and an axially symmetric model

The first example will consider a building pit which can both be computed in a flat cross section and an axially
symmetric cross section. The subsurface consists of a 5 m thick semi-confining unit atop a 20 m thick aquifer
atop a 10 m thick semi-confining layer atop a 30 m thick second aquifer. The building pit, which has a width of
20 m, a radius of 10 m, and is surrounded by impervious sheet piling to a depth of 12 m. Wells with 5 m long
screens are installed inside the sheet piling immediately below the top confining layer. The objective is to design
the necessary extraction to make sure that the head below the building pit is lowered by 5 m.

The properties are as follows

In [2]: import sys

myModules = './modules/'

if not myModules in sys.path:
sys.path.append(myModules)

#%matplotlib notebook
import matplotlib.pylab as plt
import numpy as np
import fdm_d
import mfgrid
import mfetc
#import mfexceptions as err
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def inpoly(...)

In [3]: axial = False

# aquifer
d1 = 5. # m, thickness of top confining layer
c1 = 250. # d, vertical hydraulic resistance of top confining unit
D1 = 20. # m, thickness of first aquifer
k1 = 10. # m/d, hydralic conductivity of first aquifer
d2 = 10. # m, thickness of second confining layer
c2 = 500. # d, vertical hydraulic resistance of the second confining layer
D2 = 30. # m, thickness of second aquifer
k2 = 25. # m/d, hydraulic conductivity of the second aquifer

# coordinates
R = 10.0 # m, half width or radius of building pit
RR = 2500 # m, extent of model

z0 = 0 # m, ground surface elevation
z = z0 - np.cumsum(np.array([0, d1, D1, d2, D2])) # one model layer per system layer
z = np.arange(z[0], z[-1]-0.5, -0.5) # refined vertical grid
y = np.array([-0.5, 0.5])
x = np.hstack([0, R - np.logspace(-1, np.log10(R), 21), R-0.1, R + np.logspace(-1, np.log10(RR - R))])

gr = mfgrid.Grid(x, y, z, axial)

# specifying k for all layers (We do this sequentially)
k = gr.const(d1/c1)
k[0:1, :, :] = 0.5*d1/c1 # fixed head in center of top layer
k[gr.ZM < z0-d1 ] = k1
k[gr.ZM < z0-d1-D1 ] = d2/c2
k[gr.ZM < z0-d1-D1-d2] = k2

# sheet piling
kp = 1e-7 # m/d, k sheet piling
xpl = 9.9 # m, left of sheet piling
xpr = 10.1 # m, right of sheet piling
zpt = 0. # m, top of sheet piling
zpb = -12. # m, bottom of sheet piling
Ipiling= gr.inblock((xpl, xpr), None, (zpt, zpb))

# well screens
hWells = -5.0 # m, head in the wells
xwl = 9.6 # m, left of well screens
xwr = xpl # m, right of well screens
zwt = -5. # m, top of well screens
zwb = -10. # m, bottom of well screens
Iwells = gr.inblock((xwl, xwr), None, (zwb, zwt))

# required system arrays
FQ = gr.const(0) # prescribed inflows
FH = gr.const(0) # prescribed heads
IBOUND = gr.const(1) # boundary array
IBOUND[0, :, :] = -1 # top of model has prescibed heads

# adaptation to piling and wells
k[ Ipiling] = kp # set k sheet piling to its conductivity
FH[Iwells] = hWells # head in wells to hWells
IBOUND[Iwells] = -1 # mark Wells as fixed heads

# run the fdm model
Out = fdm_d.fdm3(gr, k, k, k, FQ, FH, IBOUND)

# compute total extraction
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Qout = np.sum(Out.Q[Out.Q<0]) # total outflow
Qin = np.sum(Out.Q[Out.Q>0]) # must match total inflow

print('Total outflow = {0:.5g} {1}'.format(Qout,'m3/d' if axial else 'm2/d'))
print('Total inflow = {0:.5g} {1}'.format(Qin, 'm3/d' if axial else 'm2/d'))

# show the results
plt.figure()
plt.setp(plt.gca(), 'xlim',[0, 100])
plt.ylabel('z [m]')
if axial:

dim = 'm3/d'
plt.xlabel('r [m]')
plt.title('Axisymmetric cross section throug building pit, Q={0:.4g} {1}'.format(Qout,dim))

else:
dim = 'm2/d'
plt.xlabel('x [m]')
plt.title('Flat vertical cross section through building pit, Q={0:.4g} {1}'.format(Qout,dim))

# show head contours (50 contours)
plt.contour(gr.xc, gr.zc, Out.Phi[:, 0, :], 50)

# compute stream lines
Psi = psi(Out.Qx)

# show stream lines (30 stream lines)
plt.contour(gr.Xp, gr.Zp, Psi, 30)
plt.show()

Total outflow = -4.6819 m2/d
Total inflow = 4.6819 m2/d

The figure shows only the results near the building pit (see xlim setting).

The figure shows both the head contours and the stream lines, which, if the horizontal and vertical scales of the
figure are the same, are perpendicular to each other because the aquifer material is isotropic, kx=kz.

One can now immediately change from axially symmetric flow to flow in a flat cross section by changing the
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variabl axial above. This also leads to the correct total extraction and dimension in the title of the figure.

The stream lines clearly show how the attracted water flows underneath the practically impervious sheet piling
towards teh wells that are just inside it below the building pit. One can now readily verify the effect of the length
and the permeability of the sheet piling on the discharge from the building pit required to maintain the target head
below it.

There is an unlimited number of variations possible.

Notice the way that the total discharge was computed. Also notice how the locaton of the sheet piling and the
wells were specified using the method gr.inblock, which allows to obtain a logical array with True where cell
centers are inside the specified block.

A partially penetrating well, analytic verification

The next example is a well with a screen that partially penetrates the aquifer. For this situation there exists an
analytical solution, which allows us to verify out numerical code. The solution describes the deviation of the head
caused by the paratial penetration of the screen relative to the head loss caused by a fully penetrating screen. The
solution was published by Hantush and can be found in the book

Kruseman, GP and De Ridder, NA (1994) Analysis and Evaluation of Pumping Test Data.
→˓ Pudoc, Wageningen. Also available on the internet

∆𝑠𝑝𝑝 =
𝑄

2𝜋𝑘𝐷
× 2𝐷

𝜋𝑑
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𝐷
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𝐷
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(︁𝑛𝜋𝑧
𝐷

)︁
𝐾0

(︁𝑛𝜋𝑟
𝐷

)︁
Where: * D : [L], aquifer thickness * d : [L], screen length * a : [L], distance between bottom of screen and
bottom of aquifer * b : [L], distance between top of screen and top of aquifer * z : [L], distance/elevattion above
bottom of aquifer * r : [m], distance to center of well

The figure below shows the layout, but notice that 𝑧1 and 𝑧2 in the figure are 𝑎 and 𝑏 respectively.

../docs/_figures/PartPenWells.png

Fig. 8.1: Partial Penetration

The distances may also be taken relative to the top of the aquifer

We just have to add this extra drawdown (both positive and negative) to the drawdown due to a fully penetrating
screen. Because the influence by partial penetration does not reach beyond about 1.5 times the aquifer thickness
(ingnoring strong vertical anisotropies), it is valid to do so not only for confind aquifers for which the solution
mathematically hold,but also for both semi-confined aquifers and transient situations. For semi-confined aquifers,
the leakage through confining units with the area influenced by partial penetration is usually negligible relative
to the total. For this to be true, the aquifer thickness should be much smaller than the spreading length $ :raw-
latex:‘\lambda ‘= :raw-latex:‘sqrt { kDc }‘ >> D $. For transient situations, the change of elastic storage within
the zone influenced by partial penetration is also generally negligible realtive to that from larger distances. This
is true in unconfined aquifers, where elastic storage is orders of magnitude smaller than elastic storage. It is also
true byond a very short time after the start of pumping, when ever more water is released from storage at larger
distances than the zone influenced by partial penetration. The actual differences, may, of course, be studied by a
detailed transient numerical model.

Below we set-up an axially symmetric model with a patially penetrating screen in a confined aquifer and compare
the influence of partial penetration with the analytical solution.

In [4]: # The analytical solution
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def pp(gr, a, b, D, tol=1e-2):
"""Returns pp, the extra drawdown factor due to partial penetration

To compute the head difference between a fully and a partially penetrating
well use dpp = Q/(2pikD) pp
pp is computed according to Hantush (see e.g. Kruseman and De Ridder in their
book on the evaluation of pumping test data, available for free online)

Parameters:
-----------
`gr` : mfgrid.Grid object,

See mfgrid module, gr holds FDM grid coordinates
`a` : float

elevation of screen bottom above bottom of aquifer
`b` : float

elevation of screen top above bottom of aquifer
`D` : float

thickness of the aquifer

Returns:
--------
pp : ndarray, float

the extra drawdown factor due to partial penetration according to
Hantush (see Kruseman and De Ridder)
pp only depends on the geometry of screen relative to the aquifer

TO 181022
"""
from scipy.special import k0 # bessel function
import mfexceptions as err

d = b-a # screen length
if d<=0:

raise err.InputError("","b (sreeen top) must be larger than a (screen bottom)")

Dpp = np.zeros(gr.shape)

Nmax = 400 # max cycles in for loop
crit = np.zeros(Nmax) # store criterion, as it fluctuates heavily between successive cycles

for n in range(1, Nmax):
dpp = (np.sin(n * np.pi * b/D) - np.sin(n * np.pi * a/D)) *\

np.cos(n * np.pi *gr.ZM/D) * k0(n * np.pi * gr.XM/D) / n
Dpp += dpp
n1 = max(n-10,0)
crit[n] = np.max(np.abs(dpp).ravel())
#print('{0:4} : {1:10g}'.format(n, np.max(np.abs(dpp).ravel())))
if n>10 and np.sum(crit[n1:n])<tol:

break
print("Partial penetration computed in {0} iteration".format(n))
return (2 * D / (np.pi * d)) * Dpp

In [5]: """ For convenience of comparing with the analytical solution,
all elevations are taken with respect to the bottom of the aquifer.
"""
import matplotlib.pylab as plt
import numpy as np
import mfgrid
import fdm_d
import pdb

Q = -1200. # m3/d, extraction by screen

D = 100. # m, thickness of the aquifer
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d = 25. # m, screen length

z0 = D # m, elevation of top of model
b = 75. # m, elevation of screen top (relative to above bottom of aquifer)
a = b - d # m, elevation of screen bottom

dz = 0.5 # m, thickenss of model layers

r0 = 0.2 # m, well radius
R = 1000. # m, outer extent of model
z = np.arange(D, 0-dz, -dz)
x = np.hstack( ( 0.99 * r0, np.logspace(np.log10(r0), np.log10(R), 61), R-0.2 ) )
y = np.array([-0.5, 0.5]) # ignored

gr = mfgrid.Grid(x, y, z, axial=True)

k = 10.0 # m/d, conductivity
kD = k*D # m2/d, transmissivity

K = gr.const(k) # conductivity array
FQ = gr.const(0) # fixed flows array
FH = gr.const(0) # fixed heads array
IBOUND = gr.const(1); IBOUND[:, :, -1] = -1 # fix head at right hand side of model

# layers with screen
Iscr = np.logical_and(gr.zm > a, gr.zm < b)

# introduce the well by dividing the total flow uniformely across its screen
FQ[Iscr, 0,0] = Q/d * gr.dz[Iscr]

In [6]: # running the model, computing the stream function
Out = fdm_d.fdm3(gr, K, K, K, FQ, FH, IBOUND)
Psi = psi(Out.Qx)

Running in axial mode, y-values are ignored.

In [7]: plt.figure()
plt.title('Confined aquifer with partially penetrating screen')
plt.setp(plt.gca(), 'xlabel','r [m]', 'ylabel', 'elevation [m]', 'xlim', (gr.x[0], 200.))
plt.contour(gr.xc, gr.zc, Out.Phi[:, 0, :], 25)
plt.contour(gr.xp, gr.zp, Psi, 25)
plt.show()
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Below the same numerically computed contours are shown together with the analytically computed ones. As can
be seen the difference is very small and can be attributed to small differences between the two methods, especially
around the edges of the screen. The boundary conditions are the same,namely a fixed extraction per unit of screen
length.

In [12]: # Compute the drawdown analytically as the superposition of
# that of a fully penetrating well and the extra drawdown due to
# partial penetration.

dpp = pp(gr, a, b, D, tol=1e-2)

s = Q/(2 * np.pi * kD) * (np.log(R/ gr.XM) + dpp)
#s = dpp

# suitable set of levels for head contouring of this case
cont = np.arange(0,-5,-0.25)[::-1]

plt.figure()
plt.title('Numeric heads and stream lines and analytic heads');
plt.setp(plt.gca(), 'xlabel','r [m]', 'ylabel', 'elevation [m]', 'xlim', (gr.x[0], 100.), 'ylim',(0, D))

plt.contour(gr.xc, gr.zc, Out.Phi[:, 0, :], cont) # plot the numeric contours
plt.contour(gr.xp, gr.zp, Psi, 25) # plot the stream lines
plt.contour(gr.xm, gr.zm, s[:, 0, :], cont) # plot the analytic contours
plt.show()

Partial penetration computed in 201 iteration
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Conclusion

We have implemented the stream function and used it to obtain the stream lines as its contours. This works both
for flat models and for axially symmetric ones. Together with the head contours, the stream lines give a complete
picture of the flow.

As can be seen, the stream function jumps at and above the wells. The branchcut at this jump runs from the wells
vertically to the top of the model and, therefore, the look like wells. The number of vertial stream lines in the
branchcut is exactly equal to their extraction. The flow can be computed by counting stream lines, as between
each pair of stream lines the total discharge is the same. The specific dischage at any point can be computed by
dividing the discharge between two stream lines by the distance between them.

The second example compares the heads or rather the drawdowns in a confined aquifer with a partially penetrating
well screen. It shows that the analytical and numerical dawdowns are virtually the same, as the respective lines
almost exactly lie upon onanother.

The next chapter will deal with transient flow. Particle tracking is delayed to later.
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Transient flow

Prof. dr.ir. T.N.Olsthoorn

Heemstede, Oct. 2016, 24 May 2017

Theory

Transient flow, in fact, requires a relatively straightforward extension of our steady-state model fdm3. The water
balance equation for an arbitrary single cell in our model becomes:

𝑡+Δ𝑡∫︁
𝑡

(︁∑︁
𝑄𝑖𝑛 + 𝑄𝑒𝑥𝑡

)︁
𝑑𝑡 = 𝑊𝑡+Δ𝑡 −𝑊𝑡

The the left side of the equation describes the total net inflow for this cell, divided in a sum that originates
from the surrounding cells and the $ Q_{ext} $ denotes the total net inflow from the outside world (Injection,
Recharge, Leakage etc.). It’s clear that extractions are counted as negative injections. This total net inflow shoul
be integrated over the considered time spand, i.e. $ t :raw-latex:‘\rightarrow ‘t + :raw-latex:‘Delta ‘t $, during
which the flows may vary in arbitrary ways. To the right we have the volume of water in the cell at the end of this
period minus that at the start of this period. There is no approximation in this equation.

When it comes to our model, we will write the right hand side in terms of volume, storage coefficient $ S_S $, and
head $ h $. The integral to the left is dropped by writing for the flow their average values during the considered
period: (︁∑︁

𝑄𝑖𝑛 + 𝑄𝑒𝑥𝑡

)︁
∆𝑡 = 𝑆𝑆𝑉 (ℎ𝑡+Δ𝑡 − ℎ𝑡)

where

𝑉 = ∆𝑥∆𝑦∆𝑧

the volume of the cell.

As we saw in an earlier chapter where we derived the finite differenc method, the flow from each neighbor indexed
$ j $ into the considered cell with index $ i $ is formulated as

𝑄𝑗𝑖 = 𝐶𝑖𝑗(ℎ𝑗 − ℎ𝑖)
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Thus, $ Q $ varies during the time step according to how the heads vary. The question then is, which $ h $ is
the true average during the time step, such that, then it is used, we get the average flows during the time step and
hence we can integrate by multiplying with $ :raw-latex:‘Delta ‘t $.

The answer is, we don’t know. We only know for sure, that there exists some value of $ 0< :raw-latex:‘epsilon ‘<
1$ such that

𝑄𝑡+𝜖Δ𝑡 = 𝑄

But then, if we solve the system of equation, we wil end up with the head for this time, $ h_{t + :raw-
latex:‘\epsilon ‘:raw-latex:‘Delta ‘t} $, which definitely differs from the head at the end of the time step, which
we need to compute the storage during the time step as expressed in the equation above.

To solve this dilemma, we have to make an assumption, which is, that we assume that the time steps of our
simulation are small enough to safely approximate the change of head during them as being linear. With this
approximation, we have

ℎ𝑡+𝜖Δ𝑡 = ℎ𝑡 + 𝜖(ℎ𝑡+Δ𝑡 − ℎ𝑡)

or

ℎ𝑡+Δ𝑡 = ℎ𝑡 +
ℎ𝑡+𝜖Δ𝑡 − ℎ𝑡

𝜖

This implies that we can now replace the unknown head at the end of the time step by the one we actually compute
during the time step, by writing(︁∑︁

𝑄𝑖𝑛 + 𝑄𝑒𝑥𝑡

)︁
𝑡=𝑡+𝜖Δ𝑡

= 𝑆𝑆
𝑉

𝜖∆𝑡
(ℎ𝑡+𝜖Δ𝑡 − ℎ𝑡)

If we just realize that all flows and heads will be compute that $ t + :raw-latex:‘\epsilon ‘:raw-latex:‘Delta ‘t $,
we can omit this index and write and reorder keeping the unknown $ Q_{in} $ to the left and putting all known $
Q_{ext} $ to the right, positive when entering the cell, we obtain:

−
∑︁

𝑄𝑖𝑛 = 𝑄𝑒𝑥𝑡 − 𝑆𝑆
𝑉

𝜖∆𝑡
(ℎ− ℎ𝑡)

We see that $ h_t $ is known, because it is the head in the considered cell at the beginning of the considered time
step, i.e. at the end of the last time step. Therefore, we can rearrange to have all known values to the right of the
equal sign and all unknowns at the left. This gives

−
∑︁

𝑄𝑖𝑛 + 𝑆𝑆
𝑉

𝜖∆𝑡
ℎ = 𝑄𝑒𝑥𝑡 + 𝑆𝑆

𝑉

𝜖∆𝑡
ℎ𝑡

Just remember that the first term, $ -:raw-latex:‘sum ‘Q_{in} $ can be written out as a vector product, this becomes

[︀
−𝐶𝐸 , . . . −𝐶𝐵 , + (𝐶𝐸 + . . . + 𝐶𝐵)

]︀
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ𝐸

ℎ𝑊

ℎ𝑁

ℎ𝑆

ℎ𝑇

ℎ𝐵

ℎ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑆𝑆

𝑉

𝜖∆𝑡
ℎ = 𝑄𝑒𝑥𝑡 + 𝑆𝑆

𝑉

𝜖∆𝑡
ℎ𝑡

To bring the right-most term of the left-hand side of this equation under the vector product, we only have to put
the the factor in front of $ h $ to the sum of coefficients like so:

[︀
−𝐶𝐸 , . . . −𝐶𝐵 , +

(︀
𝐶𝐸 + . . . + 𝐶𝐵 + 𝑆𝑆

𝑉
𝜖Δ𝑡

)︀ ]︀
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ𝐸

ℎ𝑊

ℎ𝑁

ℎ𝑆

ℎ𝑇

ℎ𝐵

ℎ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑄𝑒𝑥𝑡 + 𝑆𝑆

𝑉

𝜖∆𝑡
ℎ𝑡
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We see that we have now a water balance equation for the transient cell that has exactly the same structure as the
one we developed for the steady-state case, with unknowns at the left and the known flows on the right. Notice
that the second term to the right has the same dimension as $Q_{ext} $, namely [L3/T]. The include the storage
due to the unknown head, it suffices to put the coefficient $ S_S V / (:raw-latex:‘\epsilon ‘:raw-latex:‘Delta ‘t)
$ in the coefficient of the requested node to the left. It doesn’t change any of the other coefficients.

If we compare this with the first chapter, in which it was shown how exchange between model and a fixed head in
the outside world through resistance was implemented, we see that it’s the same with implementation of transient
flow. The conducntace is added to the matrix coefficient on the left, while the known part C_{ext}h_{ext} is kept
on the right side, and it too has dimension [L3/T].

Consedering the entire model, we have such an equation for each and every cell in it. These equations are com-
bined into a system of equations

A× h𝑡+𝜖Δ𝑡 = Q𝑒𝑥𝑡 + S𝑆
V

𝜖∆𝑡
h𝑡

Where :raw-latex:‘\matbh{A}‘ is the system matrix, in which the coefficient vector $ :raw-latex:‘\mathbf{S}‘_S
:raw-latex:‘\mathbf{V}‘/(:raw-latex:‘\epsilon ‘:raw-latex:‘Delta ‘t) $ was added to its diagonal.

It is clear that these coefficents change with the lenght of the time step and, therefore the diagonal and the right-
hand side of the equation have to be adapted with each new time step, if its length changes.

The dealing with fixed heads does not change and was explained earlier in the chaper “finite differnce modeling”.

The answer that we obtain after having solved the system equation, is the head in all cells at time $ t + :raw-
latex:‘\epsilon ‘:raw-latex:‘Delta t $. Therefore we a small extra step to obtain the head $ h_{t + :raw-latex:Delta
‘t} $ at the end of the time step

h𝑡+Δ𝑡 = h𝑡 +
h𝑡+𝜖Δ𝑡 − h𝑡

𝜖

The only point that we have still circumvented is the choice of $ 0:raw-latex:epsilon‘<1 $, the so called implicit-
ness. It is the point in time expressed as the fraction of the current time-step length at which the flows and heads
represent the average values during the entire time step. In fact, we don’t know. If the head change is linear,
then $ :raw-latex:epsilon‘=0.5 $ would be exact. But when the head exponentially appoaches a new equilibrium a
value $ :raw-latex:‘\epsilon ‘> 0.5 $ is better. Not only because heads will always thrive to a new equilibrium
with time, but also because values of $ :raw-latex:‘epsilon‘<0.5 $ yield unstable solutions, we always choose a
value larger than 0.5. The most drastic choice is 𝜖 = 1, a choice which is said to make the model fully implicit. It
conceptually assumes that the heads at the end of the current timestep well represent their average values during
the time step. It may not be the most accurate value, especially with larger time steps, but it makes the model rock
stable. In fact this is the choice that the world’s most used finite difference model, MODFLOW, implicitly makes.

Is it a good or a bad choice? Well it’s not bad as errors due to this time discretization well damp out during
subsequent time steps. Nevertheless, we will keep the value of $ :raw-latex:‘epsilon ‘$ explicit, so as to allow
investigating the sensitivity of the outcomes of the model for it.

## Procedure

We compute the required coefficients for each time step as follows:

Compute

for non-axially symmetric models:

C𝑆 =
S𝑆ΔxΔyΔz

𝜖∆𝑡

for axially symmetric models:

C𝑆 =
S𝑆𝜋

(︀
x[1 :]2 − x[: −1]2

)︀
∆𝑧

𝜖∆𝑡

Add this vector $ :raw-latex:‘\mathbf{C}‘_S $ explicitly to the diagonal of the system matrix at each time step.

Compute

C𝑆h𝑡
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at the RHS of the system equation for each time step.

We solve for $ :raw-latex:‘\mathbf{h}‘_{t + :raw-latex:‘\epsilon ‘:raw-latex:‘Delta ‘t} $

h𝑡+𝜖Δ𝑡 = A−1 × (Q𝑒𝑥𝑡 + C𝑆h𝑡)

Finally compute

h𝑡+Δ𝑡 = h𝑡 +
h𝑡+𝜖Δ𝑡 − h𝑡

𝜖

And just before computing the new time step, update the know h𝑡 with the value just computed

h𝑡 = h𝑡+Δ𝑡

Implementation

We have to adapt our fdm3 model at a few places. First is its signature. We need two extra inputs, namely 𝑡 and
$ :raw-latex:‘\mathbf{S}‘_S and a possibility to adapt the implicitness $ :raw-latex:‘\epsilon ‘$. Calling this
model ‘‘fdm3t‘‘ we have

Out = fdm3t(gr, t, kx, ky, kz, Ss, FQ, FH, IBOUND, epsilon=0.67)

Where the output Out contains the computed arrays, see doc string of implementation below.

The heads are at the end of the time steps not including the intial heads. The flows [L3/T] are average flows during
each time step.

All these array are, therefore, 4 dimensional, 3 spacial dimensions and and the fourth being time. The shape of
the heads, $ Q $ and $ Qs $ arrays are, therore, $ (Ny, Nx, Nz, Nt) $

The new $ Qs $ is the flow [m3/T] during the time step that enters the cell from storage (because all flows are
positive when they enter a cell). Thus 𝑄𝑠 is positive when the head declines, yielding water from storage to the
cell that then flows towards surrounding cells (or to the external world).

We only use the specific storage of each cell. This can be easily computed from the total storage and even from
the specific yield when required.

What we have not (yet) implemented are non-lineairities like change of transmissivity of the model and, therefore,
its cells under transient unconfined conditions. To do this is not difficult. It requires updating the transmissivities of
the cells after a given number of so-called inner iterations. Each such adaptation is called an outer iterations. Once
the head and or flow changes after an out iterations have become negligible, the model is said to have converged
and the outcomes are used. Notice, however, that convergence is not always guaranteed for non-linear systems
that are solved in terms of linear equations that are updated like it is done here as well as in MODFLOW. Special
solvers can do a better job by adding non-linear Newton-Raphson schemes to the solver. MODFLOW.NWT and
the new MODFLOW.USG have such a solver, which may be necessary for strongly non-linear models. These
issues are beyond this course.

Implementation; the adepted module to include axial symmetry

In [8]: %%writefile fdm_t.py

import numpy as np
import pdb
import scipy.sparse as sp
from scipy.sparse.linalg import spsolve # to use its short name
from collections import namedtuple

class InputError(Exception):
pass
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def unique(x, tol=0.0001):
"""return sorted unique values of x, keeping ascending or descending direction"""
if x[0]>x[-1]: # vector is reversed

x = np.sort(x)[::-1] # sort and reverse
return x[np.hstack((np.diff(x) < -tol, True))]

else:
x = np.sort(x)
return x[np.hstack((np.diff(x) > +tol, True))]

def fdm3t(gr, t, kx, ky, kz, Ss, FQ, HI, IBOUND, epsilon=0.67):
'''Transient 3D Finite Difference Model returning computed heads and flows.

Heads and flows are returned as 3D arrays as specified under output parmeters.

Parameters
----------
'gr' : `grid_object`, generated by gr = Grid(x, y, z, ..)

if `gr.axial`==True, then the model is run in axially symmetric model
t : ndarray, shape: [Nt+1]

times at which the heads and flows are desired including the start time,
which is usually zero, but can have any value.

`kx`, `ky`, `kz` : ndarray, shape: (Nz, Ny, Nx), [L/T]
hydraulic conductivities along the three axes, 3D arrays.

`Ss` : ndarray, shape: (Nz, Ny, Nx), [L-1]
specific elastic storage

`FQ` : ndarray, shape: (Nz, Ny, Nx), [L3/T]
prescrived cell flows (injection positive, zero of no inflow/outflow)

`IH` : ndarray, shape: (Nz, Ny, Nx), [L]
initial heads. `IH` has the prescribed heads for the cells with prescribed head.

`IBOUND` : ndarray, shape: (Nz, Ny, Nx) of int
boundary array like in MODFLOW with values denoting

* IBOUND > 0 the head in the corresponding cells will be computed

* IBOUND = 0 cells are inactive, will be given value NaN

* IBOUND < 0 coresponding cells have prescribed head
`epsilon` : float, dimension [-]

degree of implicitness, choose value between 0.5 and 1.0

outputs
-------
`Out` : namedtuple containing heads and flows:

`Out.Phi` : ndarray, shape: (Nt+1, Nz, Ny, Nx), [L3/T]
computed heads. Inactive cells will have NaNs
To get heads at time t[i], use Out.Phi[i]
Out.Phi[0] = initial heads

`Out.Q` : ndarray, shape: (Nt, Nz, Ny, Nx), [L3/T]
net inflow in all cells during time step, inactive cells have 0
Q during time step i, use Out.Q[i]

`Out.Qs` : ndarray, shape: (Nt, Nz, Ny, Nx), [L3/T]
release from storage during time step.

`Out.Qx : ndarray, shape: (Nt, Nz, Ny, Nx-1), [L3/T]
intercell flows in x-direction (parallel to the rows)

`Out.Qy` : ndarray, shape: (Nt, Nz, Ny-1, Nx), [L3/T]
intercell flows in y-direction (parallel to the columns)

`Out.Qz` : ndarray, shape: (Nt, Nz-1, Ny, Nx), [L3/T]
intercell flows in z-direction (vertially upward postitive)

TO 161024
'''

import pdb

# define the named tuple to hold all the output of the model fdm3
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Out = namedtuple('Out',['t', 'Phi', 'Q', 'Qs', 'Qx', 'Qy', 'Qz'])
Out.__doc__ = """fdm3 output, <namedtuple>, containing fields `t`, `Phi`, `Q`, `Qs`, `Qx`, `Qy` and `Qz`\n \

Use Out.Phi, Out.Q, Out.Qx, Out.Qy and Out.Qz
or
Out.Phi[i] for the 3D heads of time `i`
Out.Q[i] for the 3D flows of time step `i`
Notice the difference between time and time step
The shape of Phi is (Nt + 1,Nz, Ny, Nx)
The shape of Q, Qs is (Nt, Nz, Ny, Nx)
For the other shapes see docstring of fdm_t
"""

if gr.axial:
print('Running in axial mode, y-values are ignored.')

if kx.shape != gr.shape:
raise AssertionError("shape of kx {0} differs from that of model {1}".format(kx.shape,gr.shape))

if ky.shape != gr.shape:
raise AssertionError("shape of ky {0} differs from that of model {1}".format(ky.shape,gr.shape))

if kz.shape != gr.shape:
raise AssertionError("shape of kz {0} differs from that of model {1}".format(kz.shape,gr.shape))

if Ss.shape != gr.shape:
raise AssertionError("shape of Ss {0} differs from that of model {1}".format(Ss.shape,gr.shape))

active = (IBOUND>0).reshape(gr.Nod,) # boolean vector denoting the active cells
inact = (IBOUND==0).reshape(gr.Nod,) # boolean vector denoting inacive cells
fxhd = (IBOUND<0).reshape(gr.Nod,) # boolean vector denoting fixed-head cells

# reshaping shorthands
dx = np.reshape(gr.dx, (1, 1, gr.Nx))
dy = np.reshape(gr.dy, (1, gr.Ny, 1))

# half cell flow resistances
if not gr.axial:

Rx1 = 0.5 * dx / ( dy * gr.DZ) / kx
Rx2 = Rx1
Ry1 = 0.5 * dy / (gr.DZ * dx) / ky
Rz1 = 0.5 * gr.DZ / ( dx * dy) / kz

else:
# prevent div by zero warning in next line; has not effect because x[0] is not used
x = gr.x.copy(); x[0] = x[0] if x[0]>0 else 0.1* x[1]

Rx1 = 1 / (2 * np.pi * kx * gr.DZ) * np.log(x[1:] / gr.xm).reshape((1, 1, gr.Nx))
Rx2 = 1 / (2 * np.pi * kx * gr.DZ) * np.log(gr.xm / x[:-1]).reshape((1, 1, gr.Nx))
Ry1 = np.inf * np.ones(gr.shape)
Rz1 = 0.5 * gr.DZ / (np.pi * (gr.x[1:]**2 - gr.x[:-1]**2).reshape((1, 1, gr.Nx)) * kz)

# set flow resistance in inactive cells to infinite
Rx1[inact.reshape(gr.shape)] = np.inf
Rx2[inact.reshape(gr.shape)] = np.inf
Ry1[inact.reshape(gr.shape)] = np.inf
Ry2 = Ry1
Rz1[inact.reshape(gr.shape)] = np.inf
Rz2 = Rz1

# conductances between adjacent cells
Cx = 1 / (Rx1[ :, :, :-1] + Rx2[:, : , 1:])
Cy = 1 / (Ry1[ :, :-1,: ] + Ry2[:, 1:, : ])
Cz = 1 / (Rz1[:-1, :, : ] + Rz2[1:, :, : ])

# storage term, variable dt not included
Cs = (Ss * gr.Volume / epsilon).ravel()
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# cell number of neighboring cells
IE = gr.NOD[ :, :, 1:] # east neighbor cell numbers
IW = gr.NOD[ :, :, :-1] # west neighbor cell numbers
IN = gr.NOD[ :, :-1, :] # north neighbor cell numbers
IS = gr.NOD[ :, 1:, :] # south neighbor cell numbers
IT = gr.NOD[:-1, :, :] # top neighbor cell numbers
IB = gr.NOD[ 1:, :, :] # bottom neighbor cell numbers

R = lambda x : x.ravel() # generate anonymous function R(x) as shorthand for x.ravel()

# notice the call csc_matrix( (data, (rowind, coind) ), (M,N)) tuple within tupple
# also notice that Cij = negative but that Cii will be postive, namely -sum(Cij)
A = sp.csc_matrix(( np.concatenate(( R(Cx), R(Cx), R(Cy), R(Cy), R(Cz), R(Cz)) ),\

(np.concatenate(( R(IE), R(IW), R(IN), R(IS), R(IB), R(IT)) ),\
np.concatenate(( R(IW), R(IE), R(IS), R(IN), R(IT), R(IB)) ),\

)), (gr.Nod,gr.Nod))

A = -A + sp.diags(np.array(A.sum(axis=1))[:,0]) # Change sign and add diagonal

#Initialize output arrays (= memory allocation)
Nt = len(t)-1
Out.Phi = np.zeros((Nt+1, gr.Nod)) # Nt+1 times
Out.Q = np.zeros((Nt , gr.Nod)) # Nt time steps
Out.Qs = np.zeros((Nt , gr.Nod))
Out.Qx = np.zeros((Nt, gr.Nz, gr.Ny, gr.Nx-1))
Out.Qy = np.zeros((Nt, gr.Nz, gr.Ny-1, gr.Nx))
Out.Qz = np.zeros((Nt, gr.Nz-1, gr.Ny, gr.Nx))

# reshape input arrays to vectors for use in system equation
FQ = R(FQ); HI = R(HI); Cs = R(Cs)

# initialize heads
Out.Phi[0] = HI

# solve heads at active locations at t_i+eps*dt_i

Nt=len(t) # for heads, at all times Phi at t[0] = initial head
Ndt=len(np.diff(t)) # for flows, average within time step

for idt, dt in enumerate(np.diff(t)):

it = idt + 1

# this A is not complete !!
RHS = FQ - (A + sp.diags(Cs / dt))[:,fxhd].dot(Out.Phi[it-1][fxhd]) # Right-hand side vector

Out.Phi[it][active] = spsolve( (A + sp.diags(Cs / dt))[active][:,active],
RHS[active] + Cs[active] / dt * Out.Phi[it-1][active])

# net cell inflow
Out.Q[idt] = A.dot(Out.Phi[it])

Out.Qs[idt] = -Cs/dt * (Out.Phi[it]-Out.Phi[it-1])

#Flows across cell faces
Out.Qx[idt] = -np.diff( Out.Phi[it].reshape(gr.shape), axis=2) * Cx
Out.Qy[idt] = +np.diff( Out.Phi[it].reshape(gr.shape), axis=1) * Cy
Out.Qz[idt] = +np.diff( Out.Phi[it].reshape(gr.shape), axis=0) * Cz

# update head to end of time step
Out.Phi[it] = Out.Phi[it-1] + (Out.Phi[it] - Out.Phi[it-1]) / epsilon
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# reshape Phi to shape of grid
Out.Phi = Out.Phi.reshape((Nt,) + gr.shape)
Out.Q = Out.Q.reshape( (Ndt,) + gr.shape)
Out.Qs = Out.Qs.reshape((Ndt,) + gr.shape)

return Out # all outputs in a named tuple for easy access

Overwriting fdm_t.py

Examples

Here we’ll work out a few axially symmetric examples to verify this model using analytical solutions.

We will also compute the darwdown in a multi-layer aquifer system.

We’ll keep truly axially symmetric 3D flow for the next chapter, after we introduced the stream function.

Preparatory work

As always we set the path to our own modules and import the required modules and general packages.

Each time after we edited one or more of our modules, we have to reload them. This is why reload is
imported.

In [2]: myModules = './modules/'

#Adding the path to our modules to the pythonpath
import sys
if not myModules in sys.path:

sys.path.append(myModules)

In [3]: # import the required general packages
import numpy as np
import matplotlib.pyplot as plt
from importlib import reload
import fdm_t # first time import
reload(fdm_t) # in case we edited fdm_t above we need to reload

# allow inline plotting
%matplotlib notebook

In [4]: # import our own modules and packages, when they exist
import fdm_t # from current directory
import mfgrid # path has been added to sys.path above
import mfetc
import mfexceptions as err

def inpoly(...)

In [9]: # when we have been editing files, make sure to reload
reload(fdm_t)
reload(mfgrid)
reload(mfetc)
reload(err)

def inpoly(...)

Out[9]: <module 'mfexceptions' from './modules/mfexceptions.py'>

A well in a confined (or unconfined) infinite aquifer (Theis)

The most famous analytic transient groundwater solution is that of the Theis well, a fully penetrating well in a
homogeneous confined aquifer, that starts pumping at a constant rate at t=0. We will now use our model in axially
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symmetric mode to compute this drawdown numerically and compare it with the analytical solution.

The analytical solution of the drawdown 𝑠 Theis well reads

𝑠 =
𝑄

4𝜋𝑘𝐷
𝑊 (𝑢), 𝑢 =

𝑟2𝑆

4𝑘𝐷𝑡

𝑊 (−) is called the Theis well function. It is a regular mathematical function known at the exponential
integral

𝑊 (𝑢) =

∞∫︁
𝑢

𝑒−𝑦

𝑦
𝑑𝑦

This exponential integral is available in Python as

from scipy.special import expi, defined as

𝑒𝑥𝑝𝑖(𝑤) =

𝑤∫︁
−∞

𝑒𝜈

𝜈
𝑑𝜈

To convert the Well function w to the expi function as defined in Python.

𝑊 (𝑢) =

𝑦=∞∫︁
𝑦=𝑢

𝑒−𝑦

𝑦
𝑑𝑦 =

𝜈=−𝑢∫︁
𝜈=−∞

𝑒𝜈

𝜈
𝑑𝜈 =

𝑦=𝑤∫︁
𝑦=∞

𝑒𝑦

𝑦
𝑑𝑦 = 𝑒𝑥𝑝𝑖(𝑤) = 𝑒𝑥𝑝𝑖(−𝑢)

Which allows us to just use expi(-u) for the analytical solution. It may practially be implemented by defining
an anonymous function (lambda function or marco) as follows:

W = lambda u: scipy.linalg.expi(-u)

In [6]: from scipy.special import expi
def W(u): return -expi(-u)
W(0.01) # check if it works

Out[6]: 4.0379295765381134

In [10]: #aquifer
c = 250. # d, vertical hydraulic resistance of the confining unit
k = 20. # m/d, horizontal hydraulic conductivity of the aquifer
D = 50. # m, thickness of teh aquifer
S = 0.001 # -, elastic storage coefficient of aquifer
ss = S/D # 1/m, speciic elastic storage coefficient
kD = k*D # m2/d, transmissivity
Q = 1200 # m3/d, extraction by well (we use -Q for extraction in model)
t = np.logspace(-3.,1.,51)
Nt = len(t)
Ndt = len(np.diff(t))

r0 = 0.2 # m, radius of the well
R = 1e4 # m, extent of model, analytic solution had not external boundary

z = np.array([0, -D])
y = np.array([-0.5, 0.5]) # m, a one m thick model (ignored when axially symmetric)
x = np.hstack((0.999 * r0, np.logspace(np.log10(r0), np.log10(R), 51)))

gr = mfgrid.Grid(x, y, z, axial=True)

K = gr.const(k)
Ss = gr.const(ss)
FQ = gr.const(0.); FQ[:, 0, 0] = -Q
FH = gr.const(0.)
IBOUND = gr.const(1) # no fixed heads
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Out = fdm_t.fdm3t(gr, t, K, K, K, Ss, FQ, FH, IBOUND, epsilon=1.0)

# analytical stuff
import scipy
W = lambda u: -scipy.special.expi(-u)

u = (gr.xm**2 * S).reshape((1,gr.Nx)) / (4 * kD *t.reshape((Nt,1)))
fi = -Q / (4 * np.pi * kD ) * W(u)

# show results
plt.figure()
plt.setp(plt.gca(),'xscale','log')
plt.xlabel('r [m]')
plt.ylabel('head change [m]')
plt.title('Theis drawdown')

for it in range(1,Nt):
plt.plot(gr.xm, fi[it], 'r')
plt.plot(gr.xm, Out.Phi[it][-1, 0, :], 'b.', label='t={0:7.3g} d'.format(t[it]))

plt.legend()

Running in axial mode, y-values are ignored.

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Out[10]: <matplotlib.legend.Legend at 0x10e174438>

The results show that the numerical model is accurate, except for the first two or three time steps and for the last
few steps.

The error with the last few steps is obvious: out model is too small, causing the drawdown to bounce back from
the closed outer boundary which as as effect an increased drawdown. As an exercise increas the outer boundary
(by increasing the variable 𝑅) to see this.

One can compute the are of influence, that is the distance where the straigt drawdown line on log scale (as in the
figure) hits zero. It can be derived from the analytical simplified solution of the logarithmic approximation of the
Theis drawdown, which is

𝑠 ≈ 𝑄

4𝜋𝑘𝐷
ln

(︂
2.25𝑘𝐷𝑡

𝑟2𝑆

)︂
which, of course, is zero for when the argument of the logarithm equals 1. This yields an expression for the radius
of influence $ r_{inf} $

𝑟𝑖𝑛𝑓 =

√︂
2.25𝑘𝐷𝑡

𝑆

which in our case is $ r_{inf} (t=1000 d) = 15000 m = 15 km $, while our model radius is only 10 km. The
problem is solved by setting 𝑅 = 1𝑒5 m (100 km).

The deviations shortly after the start of the pomp are due to an our inaccurate initial head. We used zero, indeed,
but hile this sounds correct, it is not optimal for this case. The best choice is to use the analytical solution for the
first time (which then has to be > 0), and start the model from there. When we do this, the drawdown will match
from the first to the last step. If we, however, obstinentely start with all heads equal to zero, then the model needs
about 3 steps to get into line with the analytical solution, no matter how short the initial time step that we start
with. But with this in mind, the analytical and numerical results coincide pratically perfectly.

In real cases, the start of the full extraction exactly at t=0 is physically impossible anyway, due to fact that both
the pump and the water have to be accellerate initially, which takes perhaps a minute.

Well in the center of a circular island

We will now compute the same extraction using full fledged 2D spacial flat model to compare with the analytical
solution.
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In [11]: # ananomous function to extract index for given x-value
ix = lambda x: int(np.floor(np.interp(x, gr.xm, np.arange(len(gr.xm)))))
iy = lambda y: int(np.ceil (np.interp(y, gr.ym[::-1], np.arange(len(gr.ym))[::-1])))

# aquifer
S = 0.001 # [-], storage coefficient (either specific yield or elastic)
k = 10. # m/d
D = 100. # m, thickness of the aquifer
kD = k*D # m2/d, transmissivity of aquifer
Q = -1200 # m3/d, extraction

r0 = 0.1 # m, well radius
R =1e6 # m, exent of model

# grid
Npoints = 51
x = np.logspace(np.log10(r0), np.log10(R), Npoints); x = np.hstack((-x[::-1], x))
y = np.logspace(np.log10(r0), np.log10(R), Npoints); y = np.hstack((-y[::-1], y))
z = np.array([0, -D])

gr = mfgrid.Grid(x, y, z, axial=False)

K = gr.const(k); K[-1, iy(0.), ix(0.)] = 1000 * k # remove resistance from central cell
Ss = gr.const(S/D)
FQ = gr.const(0.); FQ[-1, iy(0.), ix(0.)] = Q
FH = gr.const(0.)
IBOUND = gr.const(1) # no fixed heads

Out = fdm_t.fdm3t(gr, t, K, K, K, Ss, FQ, FH, IBOUND, epsilon=1.0)

# analytical stuff
u = ((np.abs(gr.xm)**2) * S).reshape((1,gr.Nx)) / (4 * kD *t.reshape((len(t),1)))
fi = Q/(4 * np.pi * kD) * W(u)

In [12]: # Extract the heads
plt.figure()
plt.setp(plt.gca(), 'xlabel','x [m]', 'ylabel', 'head [m]' , 'xscale', 'log')
for it in range(len(t)):

plt.plot(gr.xm[gr.xm>0], Out.Phi[it][-1, iy(0), gr.xm>0], 'b.')
plt.plot(gr.xm[gr.xm>0], fi[it][gr.xm>0], 'r')

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

As can be seen, the numerical and analyticl solutions agree. By changing the variable axial to False or True one
can choose between a flat cross sectional model and an axisymmetrical model. The correct axis and analytical
solutions will then be shown in the figure. The burden of changing variable for both cases is completely carried
by the grid object and the way in which the conductances are computed in fdm3.

To show that the water balance matches we compute below the total flow into the model.

In [13]: # plotting head versus time for a set of distances

plt.figure()
plt.setp(plt.gca(), 'xlabel', 't [d]', 'ylabel', 'head [m]', 'xscale','log')
plt.title('head in the cell with the well')

for iix in range(ix(0.0),ix(0.0)+20):
plt.plot(t, Out.Phi[:, -1, iy(0.0), iix], 'b.')
plt.plot(t, fi[:, iix], 'r')

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>
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Firstly, we observe that our large-scale model agrees well with the axisymmetric analytic solution.

Secondly, we see that it take the model a few steps to reach the analytic solution. We have discussed this in the
previous example.

Thridly, it can be seen that the drawdown in the center of the model, that is the cell [50, 50] is too big relative to
that of the analytial well. This is the case from the beginning of the simulation. It, therefore, has no relation with
the size of the model. This extra drawdown is,obviously due to the the fact that we have specified the head in the
center of the center cell so that the water first has to flow against the resistance within that cell, i.e. within the
well, before it enters the aquifer. This, of course, is nog what we mean by a well. To get the head at the boundary
of the well, in this case at the boundary of the center cell, we should give that cell a high conductivity.

We’ll leave this as an exercise for the user.

Even after we have turned the center cell into a “real” well, there remains a minor difference between the analytical
solution and the model. A small distance near the well is natural because the cell that assumes the task of the well
is square while the analytical solution assumes a circular well. This shape issue is very local and should not
influence deviations further from the well, because the extraction is the same in both the numerical and analytical
solutions. Remember there are no fixed heads, only initial heads. We simply have to attribute these remaining
minor differences to the discritization. Indeed if we refine our model by increasing Npoints above the difference
between the model and the analytical sollution gets even smaller. So, indeed, these last differences are due to the
chosen discritization.

One may also experiment with the parmeter \epsilon. one will see that the value 1.0 gives the most stable
results, initially, with no differece after a few ininitial time steps.

Water balance

The water balance should match at all times. There are two ways to check

The net inflow of the central cell should equal the extraction at all time steps. The total flow relased form storage
must also match the extraction at all time steps.

In [14]: digits = 1

# average inflow well cell during each time step:
repr( [ round( Out.Q[idt, -1, iy(0.0), ix(0.0)] , digits) for idt in range(len(np.diff(t))) ] )

Out[14]: '[-1199.8, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0, -1200.0]'

In [15]: # Show the flow from storage during each time step:
repr( [round( np.sum(Out.Qs[idt]), digits ) for idt in range(len(np.diff(t)))] )

Out[15]: '[1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0, 1200.0]'

Hence the injection in the well-cell is indeed equal to $ Q=-1200 $ m3/d, and the same is true for the relase from
storage, which adds 1200 m3/d to the model during every time step. The difference in the first time step of the
iflow is due to the storage in the cell itself, which can be set to zero by setting Ss for that cell to zero, if desired.

A well in a semi-confined aquifer (Hantush)

A second famous example for transient flow is that to a well in a semi-confined aquifer according to Hantush. The
setup is similar to that of Theis with the only difference that water is also enetering the aquifer from an overlying
confining bed. This leakage is proportional to the difference of the head maintained above the semi-confining unit
and that in de pumped aquifer.

The sollution according to Hantush can be mathematically written as

𝑠 =
𝑄

4𝜋𝑘𝐷
𝑊ℎ(𝑢,

𝑟

𝜆
), 𝑢 =

𝑟2𝑆

4𝑘𝐷𝑡
, 𝜆 =

√
𝑘𝐷𝑐

Where 𝑊𝑢(−,−) is Hantush’s well function, 𝑘𝐷 [L2/T]transmissivity of the homogeneous aquifer and 𝑐 [T] the
vertical hydraulic resistance of the homogeneous confining unit, 𝑆 the storage coefficient of the aquifer, 𝑡 [T] time,
𝑟 [m] distance to the center of the well, and 𝑄 [L3/T] the constant extraction that starts at 𝑡 = 0.
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The well fucntion can mathematically be written as

𝑊ℎ(𝑢,
𝑟

𝜆
) =

∞∫︁
𝑢

𝑒−𝑦− 1
𝑦 ( 𝑟

2𝜆 )
2

𝑦
𝑑𝑡

For $ t :raw-latex:‘\rightarrow ‘:raw-latex:‘infty $, we have $ u :raw-latex:rightarrow ‘0$, the steady state
solution, to that because

𝑠(𝑟,∞) =
𝑄

2𝜋𝑘𝐷
𝐾0

(︁ 𝑟

𝜆

)︁
=

𝑄

4𝜋𝑘𝐷
𝑊ℎ

(︁
0,

𝑟

𝜆

)︁
=

𝑄

4𝜋𝑘𝐷

∞∫︁
0

𝑒−𝑦− 1
𝑦 ( 𝑟

2𝜆 )
2

𝑦
𝑑𝑡

So that
∞∫︁
0

𝑒−𝑦− 1
𝑦 ( 𝑟

2𝜆 )
2

𝑦
𝑑𝑡 = 2𝐾0

(︁ 𝑟

𝜆

)︁
Bruggeman (1999, p877) provides a somewhat different parameterization of the function, one that completely
separates time from space, which are mixed in the Hantush form, because both 𝑢 and 𝑟/𝜆 contain the distance 𝑟
to the well. The form given by Bruggeman uses $ :raw-latex:‘\tau ‘= t/(cS)$ and $ :raw-latex:‘rho = r/:raw-
latex:lambda $ instead. Both parameters are dimensionless. :raw-latex:tau is time relative to :math:‘cS, a charac-
teristic time for the aquifer system and 𝜌 is a distance relative to a characteristic distance 𝜆 of the aquifer system.

𝑊ℎ(𝑢, 𝜌) = 𝑊𝑏(𝜏, 𝜌) =

𝜏∫︁
0

𝑒−𝑦− 𝜌2

4𝑦

𝑦
𝑑𝑦

We may now numerically integrate to zero and add half the bessel function.

In [16]: def Wh(U, rho, npl=20, inf=1e2):
"""returns Hantush's well function

The computation is done by integration from u to exp(umax)

Parameters:
-----------
U : ndarray

(r^2 S)/(4 kDt)
rho: float

r / lambda = r / sqrt(kD c)
npl : int

number of integration poins per ln cycle
inf : float

practical value for infinity as upper limit for integration

Returns:
--------
Hantush's well function value

TO 161024
"""
import numpy as np

linf = np.log10(inf)
if isinstance(U, float):

U = np.array([U])
else:

U = U.ravel()
wh = np.zeros((len(U),1))
for it,u in enumerate(U):

y = np.logspace(np.log10(u), linf,
int( (linf - np.log10(u))*npl+1) )
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arg = np.exp(-y - (0.25 * rho**2) / y) / y
wh[it] = np.sum(0.5 * (arg[:-1] + arg[1:]) * np.diff(y))

return wh

In [17]: # Compute and show the Hantush type curves together with the Theis type curve
plt.figure()
plt.setp(plt.gca(), 'xscale','log', 'yscale','log',

'xlabel', '1/u','ylabel','Wh(u)',
'title', 'Hantush type curves',
'ylim',(1e-5, 1e2), 'xlim', (0.1, 1e6))

# Values of r/L
Rho = [0.01, 0.05, 0.1, 0.5, 1., 2., 3.]

# values for U
U = 1/np.logspace(-1, 6, 71)

# Theis
plt.plot(1/U, -scipy.special.expi(-U), label='Theis')
# Hantush for each value of r/L
for ir, rho in enumerate(Rho):

plt.plot(1/U, Wh(U,rho), label='r/L={0}'.format(rho))
plt.legend(fontsize='small')

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Out[17]: <matplotlib.legend.Legend at 0x111620908>

We will now try to reproduce these Hantush type curves with our 3D transient finite difference model and compare
them with the analytical solution.

To produce the curves, we make sure that 𝑄
4𝜋𝑘𝐷 = 1. We also make sure that 1/𝑢 will vary from 0.1 to 106. And

we make sure that we produce curves for the same set of values for 𝑟/𝜆.

In [18]: #aquifer
d = 10. # m, thickness of the confining unit
D = 10. # m, thickness of teh aquifer

c = 250. # d, vertical hydraulic resistance of the confining unit
k0 = (0.5 * d)/c # m/d, water flows only through 05.*d of confining unit
k1 = 100. # m/d, horizontal hydraulic conductivity of the aquifer
kD = k1 * D # m2/d, transmissivity of aquifer
L = np.sqrt(kD * c) # characteristic or spreading length of the semi-confind aquifer system

S = 0.001 # [-], storage coefficient of aquifer

Q = 4 * np.pi * kD # m3/d, extraction by well making sure Q/(4 pi kD) = 1

t = np.logspace(-12, 12, 241) # 7 log cycles, should be enough

# coordinates
Rho = np.array([0.01, 0.05, 0.1, 0.5, 1., 2., 3.]) # desired r/L curves
rm = Rho * L # distances to extract drawdowns from to get dedired r/L curves

r0 = 0.2 # m, radius of the well
z0 = 0 # m, ground elevation, top of confining unit
z = z0 - np.array([0, d, d+D])
y = np.array([-0.5, 0.5]) # m, a one m thick model (ignored when axially symmetric)
x = np.hstack((rm-0.1, rm+0.1 ,1.01*r0, np.logspace(np.log10(r0), np.log10(5 * L), 151)))
# added rm-0.1 and rm+0.1 to have gr.xm points exactly on rm for extraction of heads

gr = mfgrid.Grid(x, y, z, axial=True)
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# System arrays
K = gr.const(np.array([k0, k1]))
Kz = gr.const(np.array([k0, 1e3 * k1])) # no vertical resistance in the aquifer
Ss = gr.const(S/D)
FQ = gr.const(0.); FQ[-1, 0, 0] = Q
FH = gr.const(0.)
IBOUND = gr.const(1)
IBOUND[0, :, :] = -1 # heads in confining unit are fixed for Hantush

# run model
Out = fdm_t.fdm3t(gr, t, K, K, Kz, Ss, FQ, FH, IBOUND)

# indices for gr.xm == rm
Ix = np.array( np.interp(rm,gr.x,np.arange(gr.Nx + 1)), dtype=int)

# visualize
plt.figure()
plt.setp(plt.gca(),'xscale','log','yscale','log',

'xlabel','1/u','ylabel','Wh(u)',
'ylim',(1e-5, 1e2),'xlim', (1e-1, 1e6),
'title', 'Hantush type curves numerically and analytically')

# Theis
plt.plot(1/U, W(U), label='Theis')

# Hantush
for ir, rho in enumerate(Rho):

# Hantush analytic
plt.plot(1/U, Wh(U,rho), label='r/L={0}'.format(rho))

for ir, rho in enumerate(Rho):
# Hantush numeric
u = (rm[ir]**2 * S) / (4 * kD * t)
plt.plot(1/u, Out.Phi[:, -1, 0, Ix[ir]], '+') #, label='r/L={0}'.format(rho))

plt.legend(fontsize='small')

Running in axial mode, y-values are ignored.

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Out[18]: <matplotlib.legend.Legend at 0x1114b8ba8>

The numerical and analytical solutions agree except for the last two lines, the ones for $ r:raw-latex:‘lambda ‘$ is
5 and 6. There is no obvious reason for that. It needs some detailed study to find out. The analytically computed
type curves are correct as can be verified on the graph of these type curves in Kruseman and De Ridder.

Excercises

Compute / show delayed yield

Delayed yield may result from the drawdown occuring above the aquitard, caused by downward leakage through
the aquitard as a consequence of pumping in the underlying aquifer. It also results from the combination of elastic
storage and water-table storage in the same unconfined aquifer. Initially the drawdown is due to elastic storage,
which spreads fast. Slowly then, the water table dradown will take over and finally determine the drawdown. As
a consequence the effect of this water-table drawdown becomes visible only after that of elastic storage.

The combined drawdown curve shows two theis-curves in series, the first one is determined by the elastic storage,
the second one by the water table storage. In Python this can readily be modeled by giving all cells a small elastic
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specific storage as was done in the previous examples, and only give the top layer cells a larger one that matches
the specific yield. Then compute the time-drawdown curve and compare it with the two Theis curves.

Compute well-bore storage (Boulton)

The storage inside the well reduces the drawdown shortly after the start of the pump. This effect was analytically
analyzed by Boulton (1963) and later by Neuman (1971). It may be implemented numerically in axially symmetric
mode by modeling the water inside the well casing explicitly. To to this, a thin column may be given a zero
horizontal conductivity to represent the impervious well casing. Then the top cell inside the casing is given a
storage coefficient equal to 1. To represent the free water level inside the screen and the casing, use a large vertical
conductivity. The extraction may then be from any of the cells inside the screen or the casing. The large vertical
conductivity inside the well makes sure the head is the same throughout the well screen and casing. The result
should be compared with the analytical solution given by Boulton. A practical manner is comparing it with curves
for Boulton in Pumping Test Books (e.g. Kruzeman & De Ridder, 1970, 1995)

The figure gives an example of a large open well in India.

Fig. 9.1: Large open well

Conclusion

We now have a flexible 3D transient finite difference model which can be used to solve fully 3D transient problems,
whereby one can easily switch between regular mode and axially symmetric model.

The model was verified using the analytical solutions of Theis and Hantush. The Theis solution was verified both
by an axially symmetric model as by a large flat model.

Last part to consider is particle tracking.
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CHAPTER 10

Particle tracking (under construction)

Prof. dr.ir. T.N.Olsthoorn

*Heemstede, 26 Oct 2016, 24 May 2017

Flow lines as opposed to stream lines

Particle tracking is one of the functions most used in a groundwater model. Contrary to stream lines that require
steady-state 2D flow without sources and sinks, particles may always be tracked to create flow lines. Clearly,
particles starting at the same location may not follow the same path if released at different times in a transient
model. In the random walk technique particles are even given a random displacement at each time step to simulate
dispersion, which alters the path of individual particles in an unforeseen manner, thus simulating dispersion.

Particle tracking in finite difference models is quite straightforward. The flows perpendicular to the cell faces are
known and, therefore, the specific discharge at theses faces may be approximated by dividing by their surface
area. Average. As the porosity in the cells at either side of a cell face may differ, so may the groundwater velocity
perpendicular to the cell face, even though the specific discharge does not.

In finite difference modeling, the flow in x, y and z- direction, which is parallel to the axes of the model, is
linearly interpolated between that at opposite cell faces. This implies that the flow in x-direction (and velocity for
that matter) is only a function of x, the velocity in y-direction only a function of y and the one in z-direction only
depends on z. This is consistent with the model assumptions and largely simplifies the analysis. However, for
large cells it may not be accurate. So it may be necessary to use smaller cells where large variations in velocity
occur in value and direction. On the other hand the elegance of this approach is that the divergence remains zero
in a cell. This means no water is lost, so that the flow paths by themselves are consistent.

Theory

It’s easier to write equations in Lyx than it is to write them in markdown or pure LaTeX.

The idea is to use relative coordinates.

Because the elevation of cells in a 3D finite difference grid may vary from cell to cell in the same layer, it may
jump when particles cross vertical cell faces. Exactly at such cell faces, the elevation is undetermined in such a
grid. This makes it much more convenient to use relative coordinates, in which each cell of the grid is a cube of
sides of length 1. To keep the travel time within each cell in each direction the same we divide the velocity in
direction 𝑥 by ∆𝑥 and likewise in the other directions.
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Because we only have the flows at the cell faces, we have to assume that the velocity varies linearly between two
opposite cell faces. For the x-direction we thus obtain for an arbitrary cell 𝑣𝑥 = 𝑄𝑥𝐿

𝜖𝑅Δ𝑦Δ𝑧 +
(︁

𝑄𝑥𝑟−𝑄𝑥𝑙

𝜖𝑅Δ𝑦Δ𝑧

)︁ (︀
𝑥−𝑥𝐿

Δ𝑥

)︀
where 𝜖 is the effective porosity of the considered cell and 𝑅 is the retardation due to sorption (𝑅 = 1 in the
absence of sorption).

To change to the velocity in the grid that consists of unit cubes, we have

𝑣𝑢 =
𝑣𝑥
∆𝑥

=
𝑄𝑥0

𝜖𝑅𝑉
+

𝑄𝑥0 −𝑄𝑥1

𝜖𝑅𝑉

(︂
𝑥− 𝑥0

∆𝑥

)︂
= 𝑣𝑢0 + (𝑣𝑢1 − 𝑣𝑢0) (𝑢− 𝑢0) = 𝑣𝑢0 + 𝑎𝑢 (𝑢− 𝑢0)

with

𝑎𝑢 = 𝑣𝑢1 − 𝑣𝑢0

The index 0 denotes the left side of the cell and the index 1 denotes the right side. This corresponds with the
relative local coordinates in the unit cube cell.

All values 𝑣𝑢0, 𝑣𝑢1 and 𝑎𝑢 can be computed a priori for all cells in the relative grid. The same is true for the other
two axes, 𝑦, and 𝑧, that become directions 𝑣 and 𝑤 in the relative grid.

As long as we are within a single cell we can set

𝑈 = 𝑢− 𝑢0

in which 0 ≤ 𝑈 ≤ 1 and 𝑈 is the local coordinate.

The travel time in this cell from intial position 𝑈𝑠 to an arbitrary position 𝑈 then follows from

𝑑𝑈

𝑑𝑡
= 𝑣𝑢0 + 𝑎𝑢𝑈

𝑑𝑡 =
𝑑𝑈

𝑣𝑢0 + 𝑎𝑢𝑈

𝑑𝑡 =
1

𝑎𝑢

𝑑 (𝑣𝑢0 + 𝑎𝑢𝑈)

𝑣𝑢0 + 𝑎𝑢𝑈

𝑎𝑢 (𝑡− 𝑡𝑠) = ln

(︂
𝑣𝑢0 + 𝑎𝑢𝑈

𝑣𝑢0 + 𝑎𝑢𝑈𝑠

)︂
in which the index 𝑠 denotes the position at the start, 𝑡 = 𝑡𝑠, 𝑈 = 𝑈𝑠.

If 𝑣𝑢0
> 0, then we find the time that the particle hits the cell face by setting 𝑈 = 1. If 𝑣𝑢0

< 0 we find it by
setting 𝑈 = 0.

Of course, this only makes sense if the argument of the ln(−) is greater than 0. That is, if the velocities at the two
opposite cell faces have the same sign. If not, the velocity is zero somewhere within the cell and the particle can
never reach the opposite face. The arrival time may then immediately be set equal to ∞.

Another problem occurs when 𝑎𝑢 = 0, i.e. when the velocities at opposite cell faces are the same. In that case the
velocity is constant so that the arrival time can be obtained from

𝑡− 𝑡𝑠 =
𝑈 − 𝑈𝑠

𝑣𝑢0

Therefore we have to select the linear or the logarithmic equation to compute the time that the cell-face is it of set
it to ∞ when it will ever be hit, which is also true of both 𝑣𝑢0 and 𝑎𝑢 are zero.

We do the same for the 𝑣 and the 𝑤 directions that correspond to 𝑦 and 𝑧 in the original grid.

The result is three hitting times, of which the smallest one determines when the particle firs hits one of the 6 cell
faces of the cube. If this time is smaller than our end-time, we move the particle to that face and subtract the time
from the original time, to get the time that it still has to travel. If the time is larger than the end-time, we set the
time to the end-time and move the particle accordingly, after which the simulation for this particle has finished.

𝑎𝑢𝑈 = (𝑣𝑢0 + 𝑎𝑢𝑈𝑠) 𝑒
𝑎𝑢(𝑡−𝑡𝑠) − 𝑣𝑢0
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𝑈 = 𝑈𝑠𝑒
𝑎𝑢(𝑡−𝑡𝑠) +

𝑣𝑢0
𝑎𝑢

(︁
𝑒𝑎𝑢(𝑡−𝑡𝑠) − 1

)︁
and for the linear case

𝑈 = (𝑡− 𝑡𝑠) 𝑣𝑢0 + 𝑈𝑠

For these formulas to work, it is necessary that the the sign of the velocities is in line with the direction of the
axis. In the relative grid we let 𝑢, 𝑣 and 𝑤 run in the direction of increasing cell indices. This is the case for the 𝑥
direction where increasing 𝑥 values coincide with increasing column indices. This is not true for the 𝑦 and the 𝑧
directions, where the coordinates run opposite to the cell indices in those directions. Therefore, we have to invert
the sing of the 𝑄𝑦 and 𝑄𝑧 arrays front up.

When the end-time has not been reached, the particle crosses over to the next cell. We update its indices to that
of the next cell and also update its relative coordinates 𝑈 , 𝑉 and 𝑊 to reflect the starting position of the particle
within the new cell.

Particles may end-up in sinks, i.e. cell from which water leaves the model. We will assume that particles have left
the model when the enter a cell that is a large-enough sink, that is, a cell for which the total extraction is larger
than 𝑠𝑖𝑛𝑘𝐹𝑟𝑎𝑐×𝑄𝑖𝑛𝑡𝑜𝑡, where is chosen by the user as 0 ≤ 𝑠𝑖𝑛𝑘𝐹𝑟𝑎𝑐 ≤ 1, usually 0.25 and 𝑄𝑖𝑛𝑡𝑜𝑡 is the total
inflow of the cell through its cell faces.

Relative coordinates can be readily computed by interpolation using cell grid indices as known values like so:

𝑢 = interp (𝑥𝑝, 𝑥𝐺𝑟, arange (len (𝑥𝐺𝑟)))

𝑈 = 𝑢− floor (𝑢)

where 𝑥𝑝 is a grid coordinate, 𝑥𝐺𝑟 are the grid coordinates of the grid lines between the columns and arange() is
the Python function that generates numbers between 0 and the specified number (len(𝑥𝐺𝑟)).

Computing grid coordinates from relative coordinates works the other way around

𝑥 = interp (𝑈 + 𝑖𝑢, arange (len (𝑥𝐺𝑟)) , 𝑥𝐺𝑟)

in which 𝑖𝑢 is the cell index of the particle along the 𝑥 direction, 𝑢 = 𝑈 + 𝑖𝑢, and 𝑖𝑢 = floor (𝑢).

In general, we should not have to worry about particles leaving the model, because the velocities perpendicular to
all outer faces of the model are zero in the finite difference concept.

Implementation

The implementation can be found in the module ./modules/mfpath.py. It is about 900 lines, too long to
include it in this notebook.

The logic of the particle tracking model is as follows:

• Switch to normalized coordinates 𝑢, 𝑣, and 𝑤

• Compute the velocities at all cell faces in all directions (6 values per cell)

• To track particles compute in local coordinates when they hit the walls of their local cell, which is a uit
cube in th normalize grid. The local coordinats are all between 0 and 1 in each cell. To get the normalized
coordinates, add the indices of the cell, 𝑢 = 𝑖𝑢 + 𝑈 where 𝑖𝑢 is the cell index along the 𝑢 axis and 𝑈 the
local coordinate.

• Doing this and knowning by the sight of the velocity 𝑣𝑢 wich cell face will be hit, we obtain three hitting
times per particle. The smallest time is chosen, together with the corresponding cell face.

• The particle is moved over this smallest time interval, updating its three ocal coordinates.

• The index of the cell is updated for the direction into which the particle hits the cell facce.

• The local coordinate of the particle in this direction is reset: if the particle left into the direction of inceasing
grid index, it is reset to zero and 1 is added to its cell index is, if it left in opposite direction, it is set to 1.0
and its cell index is reduced by one.
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• The coordinates in the other two directions where the particle did not hit the cell face, are left unchanged.

The time in the previous cell is subtracted from the remaining time, after which the procedure is repreated, as long
as the remaining time is still larger than zero. After the remaining time has been used up by all particles that are
still moving, the next time in the series for which we want particle coordinates has been reached. The particle
coordinates are then saved after having them back-transformed to those of the original grid. This play is repeated
until all particles have reached the final simulation time, or until no more flowing particles are presented in the
model, because the last ones have been swallowed by sinks or stagnated near water divides.

Afterwards, the trackes can be displayed simultaneously or be simulated or animated. The stored partciles corre-
spond to the times that were given to the model. The detail is therefore completely defined by the user.

Verification

To check the particle tracking use some convenient analytical solutions

A cross section, thickness H, porosity and recharge n, with a water divide at x=0 center obeys the following
relations

𝑣𝑥 =
𝑑𝑥

𝑑𝑡
=

𝑛𝑥

𝜖𝐻
→ 𝑑𝑥

𝑥
=

𝑛

𝜖𝐻
𝑑𝑡 → ln (𝑥) =

𝑛

𝜖𝐻
𝑡 + 𝐶 (with 𝑡 = 𝑡0, 𝑥 = 𝑥0)

ln (𝑥0) =
𝑛

𝜖𝐻
𝑡0 + 𝐶 → 𝐶 = ln (𝑥0) − 𝑛

𝜖𝐻
𝑡0

ln

(︂
𝑥

𝑥0

)︂
=

𝑛

𝜖𝐻
(𝑡− 𝑡0) → 𝑥 = 𝑥0 exp

(︁ 𝑛

𝜖𝐻
(𝑡− 𝑡0)

)︁
This can be used to check the travel time in the model in two directions.

Another simple check is a well in a confined aquifer. Here we have

𝑄𝑡 = 𝜖𝐻𝜋𝑅2 → 𝑅 =

√︂
𝑄𝑡

𝜋𝜖𝐻

So set up a model, run it, contour the results, run fdm2path, and check its results by clicking a point near the well

Example

The example used when we developed the stream lines is reused here to show both the stream lines and the tracked
particles. They should match in the steady-state situaion, when particles are released on stream lines.

Cross section (flat) with heads, streamlines and some particle tracks, obtained by clicking on the figure when
fdm2path is running (backward traces as times were negative, see input above). There is great detail near the sheet
piling where all the streamlines converge, which can only be seen by zooming in.

In [3]: myModules = './modules/'
import numpy as np
import matplotlib.pyplot as plt
import sys

if myModules not in sys.path:
sys.path.insert(1, myModules)

from importlib import reload

In [4]: import mfgrid
import fdm
import mfpath
import pdb

reload(fdm)
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axial = False
Q = -2400 if axial else -240. # m3/d if axial else m2/
por = 0.35 # [-], effective porosity

xGr = np.logspace(-1, 4, 51)
xGr = np.linspace(0, 2000, 101)
yGr = np.array([-0.5, 0.5])
zGr = np.array([0., -5, -50, -60, -100])
gr = mfgrid.Grid(xGr, yGr, zGr, axial)

IBOUND = gr.const(1); IBOUND[0, :, :] = -1 # head in top confining unit fixed
k = gr.const(np.array([0.01, 10., 0.01, 20.]))
FH = gr.const( 0.);
FQ = gr.const( 0.)
FQ[1, 0, 0] = Q # insecond layer

# run flow model
Out = fdm.fdm3(gr, (k, k, k), FQ, FH, IBOUND)

Psi = fdm.psi(Out.Qx)

#pdb.set_trace()

# visualize
title = 'Cross section Axial={0}, Q={1} {2}'.format(axial, Q, 'm3/d' if axial else 'm2/d')
ax = plt.figure().add_subplot(111)
xlim = gr.x[[0, -1]]
ax.set(xlabel='x [m]', ylabel=['z [m]'], title=title, xlim=xlim)

ax.contour(gr.xm, gr.zm, Out.Phi[:, 0, :], 30)
ax.contour(gr.xp, gr.zp, Psi, 30)
#plt.show()

# path lines
T=np.linspace(0, 3650, 100) #time series
if True:

Xp = np.linspace(200, 2000., 19)
Yp = np.zeros(Xp.shape)
Zp = np.ones(Xp.shape) * -5.

else:
Zp = np.linspace(-5., -95., 19)
Yp = np.zeros(Zp.shape)
Xp = np.ones(Zp.shape) * 1000.

#Pcl = mfpath.particle_tracker(gr, Out, por, T, Xp, Yp, Zp)
Pcl = mfpath.particle_tracker(gr, Out, gr.const(por), T=T, particles=(Xp, Yp, Zp), sinkfrac=0.75, verbose=False)

mfpath.plot_particles(Pcl, axes=ax, first_axis='y', ls='none',
markers='o ', mfc='green', markersize=4)

plt.show()
#R = np.sqrt(Q * T[-1] / (np.pi * por * np.sum(gr.dy)))

Forward tracking, because T is ascending
Job done, 19 particles tracked for time from t=0.0 to t=3650.0 in 99time steps.

The results are in variable Pcl (a 'named_tuple 'Pcl'.
whose importnat fields are Status, X, Y, Z, T, up, vp, wp.
At the and there were:
1 particles still active
18 particles captured by sinks
0 particles stagnant
The average arrival time of the captured particles is 0.05263157894736842
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TODO: More examples will follow. A number of them in 3D are already in the testsuite

Conclusion

We have implemented the particle tracking and used it both interactively as in batch mode. The method was
verified by comparison with the stream lines drived from the stream function. Tracking particles allows computing
travel times, both forward and backward tin time.

Flow lines can be used where stream lines cannot, as flow lines don’t require 2D divergence-free flow. Flow
lines can also be used in transient situations. Flow lines with travel times are amongst the most used results of
groundwater modeling, wherever pollution is involved.

To even better track particles while including dispersion and diffusion, we could track massive amounts of parti-
cles. This also allows computation of arrival concentrations. This is the subject of the last chapter.
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Indices and tables

• genindex

• modindex

• search
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