

Finite Difference Grounwater Modeling in Python

[image: ./_pictures/ThreeWellPlusInactive.png]
Finite Difference Models are derived and implemented completely in Python.
The theory and construction of these models can be used in their own right
or may serve as a thorough introduction in groundwater modeling with available
codes especially with MODFLOW, MT3DMS, MODPATH and SEAWAT.
At the end of this course we have built from ground on a powerful 3D steady state and transient finite difference groundwater code completely in Python functions and also a powerful 3D particle tracking funcion capable of tracking millions of particles simultaneously. We also have seen the versatile use of this code. The finite difference model functions are compatible with MODFLOW and MODPATH. The only limitation is that the finite difference functions allow just fixed-head and prescribed flow boundaries. This is to limit clutter and keep the finite-difference model functions in this course as lean and simple to use as possible, but the full theory is presented in the first chapter. This limitation is not a problem in most cases as, it's easy to model so-called general-head boundaries by setting appropriate conductivities.
For more advanced finite difference modeling and use of more specific packages, one should use the USGS codes MODFLOW, MODPATH, MT3DMS and SEAWAT directly. A Matlab interface as developed and used by me and my students for the last 8 years in many projects is available under project mfLab on SourceForge.org. A Python interface is available under the name PyFlow as developed by the USGS.

Contents:

	Finite Difference Groundwater Modeling in Python
	Previously Matlab-based graduate course at TUDelft
	Abstract ABSTRACT

	Numerical groundwater modeling

	Finite difference modeling
	Approach

	Setup of the model by specifying its dimensions

	IBOUND array - telling which cells are active and which have a prescribed head

	Cell conductancies: defining the ease of flow between adjacent cells

	Setting up the system matrix - set of water balance equations

	Boundary conditions
	Fixed flows

	Fixed heads

	Solving the matrix equation for the unknown heads

	Plotting the heads as contours

	Conclusion

	A finite difference model as a Python function
	Generalize the finite difference model into a callable function

	Apply the model
	Generate input to run the model with

	Call the function with the correct arguments

	Visualization of the results: plot heads as contours

	Conclusion

	Examples
	Example 1: flow between 2 fixed bounaries

	Example 2, semi-confined flow (mazure case)

	Example 3, same case, but using only two layers

	Cicular island with recharge

	Circular polder

	More efficient coordinates

	Computing flows with the finite difference model
	Adding flows to the output of fdm3

	Flow output of the model
	Flows in the cell centers

	Some more additions been made to the model:

	fdm3 model with computation of flows

	Application of the model
	Generate input to run the model with (same example)

	Call the function with the correct arguments

	Visualization of the results: plot heads as contours

	Conclusion

	A Grid class to deal with any finite difference model grid
	Using a Grid class to handle spatial information regarding the grid

	Grid-adapted model fdm3

	Example

	Conclusion

	Axially symmetric modeling
	Theory

	Implementation; the adepted module to include axial symmetry

	Examples
	Circular island

	A well in a semi-confined aquifer

	Conclusion

	Stream lines
	Stream lines

	The stream function

	The stream function implemented

	Examples
	Smart pumping below a building pit: a flat and an axially symmetric model

	A partially penetrating well, analytic verification

	Conclusion

	Transient flow
	Theory

	Implementation

	Implementation; the adepted module to include axial symmetry

	Examples
	Preparatory work

	A well in a confined (or unconfined) infinite aquifer (Theis)

	Well in the center of a circular island

	Water balance

	A well in a semi-confined aquifer (Hantush)

	Excercises
	Compute / show delayed yield

	Compute well-bore storage (Boulton)

	Conclusion

	Particle tracking (under construction)
	Flow lines as opposed to stream lines

	Theory

	Implementation

	Verification

	Example

	Conclusion

Indices and tables

	Index

	Module Index

	Search Page

Finite Difference Groundwater Modeling in Python

Previously Matlab-based graduate course at TUDelft

Prof. dr.ir. T.N.Olsthoorn

Dec 31, 2016, 24 May 2016

[image:]

Abstract ABSTRACT

This syllabus explains the theory behind numerical groundwater modeling
and how to make your own finite difference groundwater models in Python.
The theory is equally well applicable to other computations and computer
language environments like Octave, Scilab and Python. This syllabus aims
at providing in-depth insight in numerical modeling of groundwater. It
is also base for exercises in the master course CT5440, Geohydrology 2,
of the TU-Delft. Although the structure is kept general, and, therefore
applicable also to other times of models like finite element models and
even surface water flow models, its focus is on finite difference
models.

During the course, the student will build his or her own finite
difference model in Python. The student will see how flat, axially
symmetric, 3D, steady-state and transient models are related. He will
also learn how initial and boundary conditions are introduced. Special
attention is given to effective treatment of fixed-head boundaries. The
models are small Python functions, elegant yet powerful, i.e. capable of
simulating simple and small as well as complex and and large groundwater
flow problems.The examples serve to demonstrate some things what may be
done as well to verify their accuracy including some pitfalls and how to
avoid them.

A real world modeling project is generally preceded by a stage where
insight is gained into the answers to be provided and the structure and
processes relevant in the system to be modeled. In a subsequent step,
one or more conceptual models will be made to simulate groundwater
behavior under a number of stresses of various types in terms of heads
and flows that force the groundwater in the system. Such stresses are
surface water elevations, recharge, evaporation, pumping and drainage.
The questions to be answered in combination with the relevant complexity
of the system also determine the detail of the model mesh to be used,
both in space and time. Much time is generally spent on acquiring input
and putting it into the form in which the model can use it. Nowadays,
much information is often directly drawn from databases and already
filled GIS systems, including remotely sensed data such a rain radar.
However, one must remain very critical regarding the relevance and
correctness of each data item with respect to the modeling problem at
hand. In the end, the modeler is responsible for the outcomes, not the
model or the computer. The results and predictions often stand at the
basis of decisions that will affect livelihoods of people as well as
habitats of plants and animals. Lack of time prohibits dealing with with
such extended real-world problems in this course. Insight into the
internal behavior of the model and the ability to verify its outcomes
are more relevant to the engineer, and therefore, is the focus of this
syllabus.

[image: mesh1]
mesh1

Figure: Different model meshes (grid). Left: a finite element triangular
network with the nodes at the element corners. Middle: a hexagonal
finite difference network with nodes in the center of hexagonal cells.
Right: a rectangular finite difference network with nodes in the center
of the cells. Area properties are generally specified for elements in
the finite element method and for cells in the finite difference method.
Heads and flows are generally specified at the nodes of the finite
element method and at the cell centers of the finite difference method.

Because MODFLOW, the open-source groundwater model of the United States
Geological Survey, is worldwide the most used groundwater model, we’ll
stay close to its approaches and terminology so that the MODFLOW manual
will look familiar to the student. MODFLOW is a fully-implicit 3D finite
difference model written in FORTRAN. It can be downloaded together with
its manual and source code from HTTP://water.USGS.gov/ogw/modflow.

The Python environment is far more expressive and, from that point of
view more powerful than FORTRAN meaning we can set-up a powerful
MODFLOW-like model in Python within a few tens of lines of code in way
we can fully understand; MODFLOW requires thousands of lines of FORTRAN
that are difficult to grasp unless you are a software engineer with
expertise in FORTRAN and modeling at the same time. Python has the power
to build a model line by line, interactively, while testing each part of
the code immediately on screen, supported by its very powerful debugger,
which points at the location where a problem occurred and allows full
inspection of the circumstances that caused it.

Next to modeling, Python is also a powerful environment to visualize
modeling results. Therefore, outside Python no additional packages are
required. Some Python knowledge has, of course, to be acquired during
the course. There exist very good Python books, documentation and
tutorials on the web; vertually any question related to Python can be
“googled” to find useful ansers..

Numerical groundwater modeling

We will start with a general description of groundwater modeling and
then derive an actual numerical model, which will finely be converted
into a finite difference model by choosing the network and the way the
so-called conductance between model cells are computed. The general
overview that follows is valid for all kinds of numerical models. We
will follow the general approach as long as possible because it provides
the best insight with the least clutter.

Numerical models divide the space to be modeled into an often large
number subspaces, called elements in the Finite Element Method (FDM) or
cells in the Finite Difference Method (FDM). The properties of each
element or cell are specified and generally taken constant within. In
the FEM, the heads will be computed at the nodes, whereas in the FDM
they will be computed at the cell centers. In the FEM, flows will be
computed between the nodes, whereas in the FDM they will be computed at
the cell faces between adjacent elements. In the FDM the governing
partial differential equation directly discretized on the grid, which
takes the form of a water balance equation of each cell and, hence, for
the model as a whole. The FEM requires that the partial differential
equation integrated over each element is satisfied. Solving the model
means adjusting all non-fixed nodal or cell heads such that the water
balance over all cells and elements are satisfied simultaneously. The
FEM and FDM generally lead to different grid shapes, see
[fig:Different-model-meshes]. The elements associated with the FEM may
be of arbitrary shape, while the shape in the FDM is generally more
limited to regular hexagons or rectangular for instance. However, the
newest version of MODFLOW, MODFLOW-USG which stands for “Un Structured
Grid”, brings finite elements and finite differences much closer
together by allowing arbitrarily shaped grids, but this is considered
beyond the scope of this syllabus.

To stay close to MODFLOW, we will make a finite difference model with
rectangular or block-shaped cells in which the properties of the
subsurface are assumed constant and at the center of which the heads are
computed. The flows are computed at the cell faces, i.e. between
adjacent cells.

Although it is straightforward to derive a full 3D finite difference
model from the onset, we start with a 2D model for simplicity, where we
divide the subsurface into Ny rows and Nx columns. The cell sizes thus
defined may vary from column to column and from row to row. The
thickness in the z-direction may vary if desired.. This configuration is
shown in right-hand picture of figure [fig:Different-model-meshes]. This
approach is easy to understand and easy to implement.

The finial result of any of the possible derivations of the model
equations, no matter if they are for a finite element model or a finite
difference model, comes down to a system of equations, each of which is
the water balance for a node or cell of that model. This system of
equations represents all nodal water balances. Solving the model is
fulfilling these water balances for all models simultaneously. This is
achieved computing the unknown heads in the nodes/cells that make all
nodal/cell water balances match simultaneously.

The FDM is derived by directly writing down equations for the water
balance for the nodes; the FEM takes a more general approach by
requiring the governing partial differential equation, which is the
water balance on infinitesimal scale, to be optimally fulfilled within
all of the elements. The the FEM is more complicated in deriving its
equations and setting up the model, but the bonus is more flexibility in
element shapes.

In the end, any numerical groundwater model yields a set of water
balances, one for each node. This is true for the FEM, the FDM as it is
for any surface water model. In all such models the the space between
nodes is replaced by links model types differ only in the way how this
is done. In any case, the number of equations, as well as the number of
unknowns, equals the number of non-fixed nodes, equals the number of
water balances. A finite difference model of 300 rows, 300 columns and
10 layers thus has 0.9 million equations and the same order of unknowns.

Figure [fig:Model-node] shows some of the nodes (or cell centers) of an
arbitrary finite element or finite difference model. For one node or
cell, with index number i, the adjacent nodes are shown to which it is
directly connected, that is, they share one element edge in the FEM or
one cell face in the FDM (or one canal or river section in a surface
water model). The only difference between these types of models is the
way in which the connections are computed. So most of the discussion
about modeling and model construction can be done without bothering
about these specific details, which is the line followed in this
syllabus, because it is most general. For the sake of simplicity
whenever the word node is used it can be read as a node in the FEM or
equally as a cell center in the FDM.

[image: Nodes in mesh] Figure: A model node with its surrounding connected
neighbors

Just as general is, that the flow \(Q_{ij}\) from node i in the
direction of adjacent node j with heads \(\phi_{i}\) and
\(\phi_{j}\) respectively, is described by

\[Q_{ij} = C_{ij}\left(\phi_{i}-\phi_{j}\right)\]

\[= \frac{1}{R_{ij}}\left(\phi_{i}-\phi_{j}\right)\]

\(C_{ij}\) [(L3/T)/L]} or [L2/T] is called the “conductance” and its
reciprocal is the “resistance”
\(\mbox{[L/(\ensuremath{L^{3}}/T)]}\). The conductance comprises the
properties of the area between the connected nodes and their distance.
In case the conductance is not constant, as is the case in a surface
water model or in a groundwater model with a water table in which the
transmissivity is not known a priori, this flow must be computed
iteratively.

The physical meaning of the conductance is obvious: it is the flow of
water \([L3/T]\) from node \(i\) to node \(j\) in case the
head difference \(\phi_{i}-\phi_{j}\) [L] equals 1 [L]. The actual
dimension depends on the system used, i.g meters and days or feet and
hours.

The steady state water balance of an arbitrary node i in the numerical
model is described by the following equation

\[v\sum_{j=i,\,j\ne i}^{j=N}Q_{ij}=Q_{i}\]

Where \(Q_{i}\) is the inflow to the node or cell from the outside
world and the left hand side is the combined outflow from the node or
cell to all its neighbors. Hence inflow from the outside world into the
model is taken positive. The left -hand side thus represents the flow
from node i through the model towards its connected neighbors. We will
deal with transient models later.

The nodal inflow \(Q_{i}\), is the sum of all inflows of water from
the outside world into node \(i\) minus the extractions of water
from node \(i\) to the the outside world. Therefore, \(Q_{i}\)
combines recharge, injections, extractions, leakage, drainage and so on,
summed over and integrated over the space attributed to the node (FEM)
or cell (FDM).

Using conductances, the nodal water balance becomes:

\[\sum_{j=1,\,j\ne i}^{N}C_{ij}\left(\phi_{i}-\phi_{j}\right)=Q_{i}\]

Notice that \(i\) and \(j\) run over all the nodes of the model.
This equations expresses that node \(i\) may be connected to any or
all other nodes of the model no matter how far apart. Of course, in an
ordinary model each node is only connected to its direct neighbors.
Therefore, most of the conductances \(C_{ij}\) are zero. In case a
node has n connected neighbors, only \(n+1\) of these conductances
are non-zero for each node. Therefore, of a model with \(N\) nodes
has \(N\times N\) possible connections of which \(N\) with node
\(i\). These connections, and hence, conductances, potentially fill
a matrix of \(N\) rows and \(N\) columns. Notice that a finite
difference model with a grid consisting of \(N_{x}\) rows by
\(N_{y}\) columns and \(N_{z}\) layers, ha
\(N=N_{x}\times N_{y}\times N_{z}\) cells, and, therefore, this
\(N\times N\) array can easily exceed the memory capacity of any
available computer. For instance, a model having “only” 300 rows, 300
columns and 10 layers has \(N=0.9\) million cells and hence the
\(N\times N\) array of possible conductances has
\(N^{2}=0.81\times10^{12}\) entries. With, with 4 bytes per value to
be stored this would require a computer memory of \(3\times10^{12}\)
bytes or about 3 terabyte. This is huge for any internal computer
memory. However, if we only store the non-zero values, then the maximum
number of conductance to be stored it tremendously reduced. In a 3D
finite difference model the maximum number of connected neighbors of any
cell is 7. This implies that the number of non-zero values can be no
more than \(7\times N\) , i.e.
\(7\times4\times0.81\times10^{6}\approx\ 30\) Mb in the example
model. This memory storage peanuts on even a modern PC with for instance
8 GB internal memory. In fact the array of conductances is extremely
sparse. In this case the fraction of non-zero values is at most
\(7\times N/N^{2}=7/N\approx10^{-5}\) or 0.001%.. We will therefore
make use of this sparsety when storing the system matrix and solving the
model, because, if we do not do this, our computer could not even handle
a small size model!

Writing out the above balance equation yields

\[-C_{i1}\phi_{1}-C_{i2}\phi_{2}-\ldots+\left(\sum_{j=i,\,j\ne i}^{j=N}C_{ij}\right)\phi_{ii}\ldots-C_{i,\,N-1}\phi_{N-1}-C_{i,\,N}\phi_{N}=Q_{i}\]

or

\[-C_{i1}\phi_{1}-C_{i2}\phi_{2}-\ldots+C_{ii}\phi_{ii}\ldots-C_{i,\,N-1}\phi_{N-1}-C_{i,\,N}\phi_{N}=Q_{i}\]

where

\[C_{ii} = -\sum_{j=1,j\ne i}^{N}C_{ij}\]

The physical meaning of diagonal matrix element \(C_{ij}\) is the
amount of water flowing from node i to all its adjacent nodes if the
head in node i is exactly 1 m higher than that of its neighbors.

Equation [eq:nodal-water-balance-with-conductances] can be written
compactly as follows:

\[\sum_{j=1}^{N}C_{ij}\phi_{j}=Q_{i}\]

where the sum taken over all matrix elements in a row equals zero

\[\sum_{j=1}^{N}C_{ij}=0\]

which means that the flow from node \(i\) to node \(j\) with
\(\phi_{i}-\phi_{j}=1\) equals the flow from node \(j\) to node
\(i\) when \(\phi_{j}-\phi_{i}=1\). Under special circumstances,
this may not be true, in which case the model is non-linear and needs to
be solved iteratively.

Equation [eq:system-equation-as-sum] is equivalent to the matrix
equation

\[\mathbf{C}\mathbf{\Phi}=\mathbf{Q}\]

With \(\mathbf{C}\) the square coefficient or system matrix, which
holds the conductances \(-C_{ij},\,i\ne j\) and \(C_{ii}\) as
defined in equation [eq:Cii]. In a 3D finite difference model, both
\(i\) and \(j\) may take values from 1 to
\(N_{x}\times N_{y}\times N_{z}\). Therefore, the size of
\(\mathbf{C}\) in such a model is
\(N_{x}\times N_{y}\times N_{z}\) rows by
\(N_{x}\times N_{y}\times N_{z}\) columns, which potentially is
huge. \(\Phi\) is the column vector of still unknown heads at the
nodes or cell centers (its size is \(1\times N_{x}N_{y}N_{z}\)) and
\(\mathbf{Q}\) the column vector net nodal or cell inflows from the
outside world, which has the same size as \(\Phi\)..

To fill the system matrix, we have to compute the conductances between
all connected nodes and put their value into the matrix at location
specified by \(i\) and \(j\). That is, \(-C_{ij}\) goes to
row \(i\) and column \(j\), \(i\ne j\). When done, the
coefficients for the diagonal, \(C_{ii}\), are computed by taking
the negative sum of the no-diagonal elements in line \(i\) of the
matrix, which representing node \(i\).

Before deriving the expressions for the conductances, and hence, the how
to compute the elements in the system matrix, we consider the model’s
boundary conditions.

To prevent having to deal with the zeros in over 99% of the system
matrix, Python’s scipy.sparse module offers sparse matrices and
sparse matrix functions. These sparse matrices work exactly like
ordinary matrices but they store only the non-zero elements.
Scipy.sparse also offers sparse matrix functions that know how to
handle sparse matrices and how to deal only with the non-zeros elements.
It is the sparse matrices that make computing of large numerical models
feasible on a PC.

Boundary conditions connect the model to the outside world, by linking
nodes to heads outside the model or by specifying inflows and
extractions, which can be of any type including wells, drainage,
recharge and evaporation. Model nodes can also be linked to an outside
head through a conductance \(\hat{C}\) or a resistance
\(R=1/\hat{C}\). Such lines turn out to be a mixture of a fixed head
and a fix flow boundary.

Exchange between model nodes and the outside world through flows is
quite trivial: all net inflows to (negative if outflows from) the
outside world, whatever their type, are directly added to the the inflow
at the right-hand size of equation [eq:Model-equation]; i.e. all given
inflows minus outflows to node \(i\) are added to \(Q_{i}\) in
vector \(\mathbf{Q}\).

The other types of boundary condition deal with heads, such that the
flow between the outside world and the model node is driven by the head
difference, and, therefore, is a priori unknown. We treat this in a
general way, i.e. by writing out how fixed heads in the outside world
connect to nodes of the model through a conductance \(\hat{C}\).
Heads that are fixed directly at a node of the model, i.e. fixed heads,
become a limiting case in which the conductance approaches
\(\infty\) or the resistance approaches zero. These heads can and
will be handled separately in a way that speeds up the model and
stabilizes it.

Consider flow \(Q_{ex,\,i}\) into node \(i\) from from a water
body in the external to the model. Let the head in that water body be
fixed and equal to \(h_{i}\) while the head \(\phi_{i}\) in the
model at node \(i\) is unknown. This flow through the conductance
\(\hat{C}_{i}\) between node and outside world equals

\[Q_{ex,\,i}=\hat{C}_{i}\left(h_{i}-\phi_{i}\right)\]

This flow can be simply added to the right-hand side of the model
equation to give

\[\sum_{j=i,\,j\ne i}^{N}-C_{ij}\phi_{j}+C_{ii}\phi_{i}=Q_{i}+\hat{C}_{i}\left(h_{i}-\phi_{i}\right)\]

in which the diagonal \(C_{ii}\) was taken out of the matrix for
clarity (notice the sum indices).

Equation [eq:Qex] represents a net inward flow , just like the given
inflow \(Q_{i}\).

This way, each model node may be connected to the outside world having
arbitrary fixed heads (lakes, rivers and so on).

The constant part , \(\hat{C}_{i}h_{i}\), works exactly like a fixed
inflow. The variable part, \(C_{i}\phi_{i}\), may be put to the
left-hand side of the equation to yield

\[\sum_{j=i,\,j\ne i}^{N}-C_{ij}\phi_{j}+\left(C_{ii}+\hat{C}_{i}\right)\phi_{i}=Q_{i}+C_{i}h_{i}\]

This boils down to adding \(\hat{C}_{i}\) to the diagonal matrix
entry, \(C_{ii}\rightarrow C_{ii}+\hat{C}_{i}\).

In matrix form for direct in use in Python, using the subscript
\(\mathbf{ghb}\) to indicate general head boundary

\[\left(\mathbf{C}+diag\left(\mathbf{\hat{C}_{ghb}}\right)\right)\mathbf{\Phi}=\mathbf{Q}+\mathbf{\hat{C}_{ghb}}\cdot\mathbf{h}\]

Where \(diag\left(\mathbf{\hat{C}_{g}}\right)\) is an
\(N\times N\) diagonal matrix with the elements \(\hat{C}_{i}\).
This is indeed equivalent to adding \(\hat{C}_{i}\) to the diagonal
elements \(C_{ii}\). Notice that \(\hat{C}_{i}\ne0\) only where
general head boundaries exist, but they can be associated with any cell
in the model.

The boundary conditions explained in this section are so-called general
head boundaries. In Modflow jargon they are abbreviated to GHB. Truly
fixed-head boundaries are dealt with further down.

Modflow has two other variants of these general head boundaries: called
drains (abbreviated to DRN) and rivers (abbreviated to RIV). DRNs differ
form GHBs in that they only discharge when the head in the model is
above the user-specified drain elevation. RIVs differ from GHBs in that
the head difference that drives the flow from the river to the connected
model node is limited to the water depth of the river; if the head in
the model node declines below the river bottom, the river bottom is used
instead of the head as explained below.

Drains and rivers thus make the model non-linear as they imply a switch,
i.e. cut off or curtail flow depending on the head in the model. Such
non-linearities are dealt with using iterative matrix solvers, so that
the flows can be updated during the solution process. We will ignore
iterative solvers in Python even when the model is non-linear and use a
standard (sparse) matrix solver repeatedly when needed, until
convergence is achieved. This mostly works faster.

As said above, drains work as general head boundaries as long as the
head is above the drain elevation. When the head declines to below the
local drain elevation, the flow is set to zero. For the DRN cells we
thus need to specify a drain elevation, i.e. a vector
\(\mathbf{h}_{\mathbf{drn}}\) next to the drain conductances
\(\hat{\mathbf{C}}_{\mathbf{drn}}\). Of course,
\(\hat{C}_{\mathbf{drn,i}}\ne0\) only for cells that have drains
connected.

The switch may be implemented as a using Boolean vector
\(\mathbf{b}_{\mathbf{drn}}\) which contains true (or 1) for all
cells where \(\Phi>\mathbf{h}_{\mathbf{drn}}\) and false (0)
otherwise:

\[\mathbf{b}_{\mathbf{drn}}=\left(\Phi>\mathbf{h}_{\mathbf{drn}}\right)\]

Hence, the drains are implemented as follows:

\[\left(\mathbf{C}+diag\left(\mathbf{\hat{C}}_{\mathbf{drn}}\cdot\mathbf{b}_{\mathbf{drn}}\right)\right)\Phi
=\mathbf{Q}+\mathbf{\hat{C}}_{\mathbf{drn}} \cdot\mathbf{b}_{\mathbf{drn}}\cdot\mathbf{h}_{\mathbf{drn}}\]

Notice that in Python, a Boolean true becomes 1 if used in arithmetic
operations and false then becomes zero. The Boolean vector in the above
equation should therefore be read as a vector of ones an zeros.

River boundaries are also general head boundaries as long as the head
remains above the bottom of the river. When it falls below the river
bottom, \(h_{B}\), the infiltration is assumed to pass through the
unsaturated zone without suction from the fallen head. So, for an
arbitrary river node:

\[Q_{riv} = \hat{C}_{R}\left(h_{riv}-\phi\right),\,\,\,\,\,\,\phi>h_{bot}\]

\[Q_{riv} = \hat{C}_{riv}\left(h_{riv}-h_{B}\right),\,\,\,\,\,\phi\le h_{bot}\]

writing \(b_{riv}=\phi>h_{bot}\) and
\(\neg b_{riv}=\neg\left(\phi>h_{bot}\right)=\phi\le h_{bot}\)

or

\[Q_{riv} = \hat{C}_{riv}\left(h_{riv}-\phi\right)b_{riv}+\hat{C}_{riv}\left(h_{riv}-h_{bot}\right)\neg b_{riv}\]

In Python where \(\neg b_{riv}=1-b_{riv}\) this reduces to

\[Q_{riv} = \hat{C}_{riv}\left(h_{riv}-\phi\right)b_{riv}+\hat{C}_{riv}\left(h_{riv}-h_{riv}\right)-\hat{C}_{riv}\left(h_{riv}-h_{bot}\right)b_{riv}\]

\[= \hat{C}_{riv}\left(h_{riv}-h_{bot}\right)+\hat{C}_{riv}\left(h_{bot}-\phi\right)b_{riv}\]

Therefore MODFLOW-type rivers can be implemented as follows

\[\left(\mathbf{C}+diag\left(\mathbf{\hat{C}_{riv}\cdot b_{riv}}\right)\right)\Phi=\mathbf{Q}+\mathbf{\hat{C}}_{\mathbf{riv}}\left(\mathbf{h}_{\mathbf{riv}}-\left(1-\mathbf{b_{riv}}\right)\mathbf{h}_{\mathbf{bot}}\right)\]

Combining the three previous sections, the model equation with all
general head, drain and river boundaries then becomes:

\[\left(\mathbf{C}+diag\left(\mathbf{\hat{C}_{ghb}+\hat{C}_{drn}\cdot b_{drn}+\hat{C_{riv}}\cdot b_{riv}}\right)\right)\Phi = RHS\]

\[RHS=\mathbf{Q}+\hat{\mathbf{C}}_{\mathbf{ghb}}\cdot\mathbf{h}_{\mathbf{ghb}}+\hat{\mathbf{C}}_{\mathbf{drn}}\mathbf{\cdot h_{drn}}\cdot\mathbf{b_{drn}}+\mathbf{\hat{C}}_{\mathbf{riv}}\cdot\left(\mathbf{h}_{\mathbf{riv}}-\left(1-\mathbf{b_{riv}}\right)\mathbf{h}_{bot}\right)\]

Equation [eq:system-equation-head-boundaries] specifies the complete
model from which the heads may be solved directly in Python using the
appropriate function (see actual Python code in subsequent chapters).

Combining for simplicity the contribution from the different head
boundary conditions under :raw-latex:`\mathbf{\hat{C}}` and h,
different, the solution of equation [eq:system-equation-head-boundaries]
simplifies to:

\[\Phi=\left(\mathbf{C}+diag\left(\hat{\mathbf{C}}\right)\right)\backslash\left(\mathbf{Q}+\mathbf{\hat{C}}\cdot\mathbf{h}\right)\]

where the backslash is “Matlab language” means: solve this set of
equations for the unknowns at the left, but don’t necessarily invert the
matrix left of the \ for computation efficiency reasons.

The column vector \(\mathbf{\hat{C}}\cdot\mathbf{h}\) contains
therefore the elements \(c_{i}h_{i}\).

The latter system equation ([eq:system-equation]), which solves for the
unknown heads \(\Phi\) and includes the boundary conditions,
represents the complete model .

Once the heads are computed by [eq:system-equation], we may calculate
the net inflow of all the nodes or nodes by the matrix multiplication
[eq:Model-equation], which must be zero when summed over the entire
model

\[\sum\mathbf{Q}_{in}=0\]

This is an easy check of correct implementation.

We may compute the inflow from all external fixed-head sources (negative
if the flow is outward) from

\[\mathbf{Q}_{FH}=\mathbf{C}\Phi-\mathbf{Q}\]

Above we used so-called general-head boundaries, i.e. fixed heads in the
outside world that connect with the model through a conductance. The
general head boundaries were extended to specific forms, i.e. drains and
river boundaries. However, most models also define fixed-head boundaries
as nodes in which the heads are directly prescribed and need not to be
computed at all..

One way to deal with fixed-head boundaries is through the use of a very
large conductance in combination with general head boundaries, i.e.
\(\hat{C}_{i}\rightarrow\infty\), i.e. say
\(\hat{C}_{i}=\Gamma=10^{10}\) or so) with \(\Gamma\) here
representing an infinite value of \(\hat{C}_{i}\).

Then for the fixed-head nodes we have

\[\sum_{j=1,\,j\ne i}^{N}-C_{ij}\phi_{j}+\left(C_{ii}+\Gamma\right)\phi_{i}=Q_{i}+\Gamma h_{i}\]

Because \(\Gamma\rightarrow\infty\) and so
\(\Gamma\gg\left|C_{ii}\right|\), then by dividing the left and
right hand side by \(\Gamma\), yields

\[\phi_{i}=h_{i}\]

This may be all what is needed to fix heads in given nodes. It works
well in Python. However, it is inefficiency and the system matrix may
become unstable leading to very high condition values with the risk of
inaccurate results. But normally no difficulties occur and the results
are very accurate. Below we show a better, far more efficient and surely
accurate method.

Differentiating between active and inactive cells is common in finite
difference modeling with regular grids. Inactive cells represent a part
of the grid that does not take part of the model. It might represent
bedrock with no groundwater at all. The active cells are the cells for
which the heads are unknown and must be computed. Then there is a third
category of cells, namely the cells with a fixed head. To differentiate
between these three categories of cells, MODFLOW uses its IBOUND array
as a three-way Boolean. The IBOUND array has the same shape and number
of cells as the grid and contains integers (whole numbers). It is
interpreted as follows:

Cells with a value \(>0\) are active cells with unknown heads.

Cells with a value equal to zero are inactive and therefore excluded
from the model

Cells with a value \(<0\) have a fixed head. The head values are
taken from the array with STRTHD values.

The IBOUND array may be just just as a 3-way Boolean, but often also as
a zone-array indicating the position of certain features. This is
because from the point of view of the model on only thing that matters
is whether the IBOUND value of a cell is less than, equal to or larger
than zero.

In Python obtaining a Boolean array of active cells, inactive cells or
fixed head cell can be done as follows, where we use the ravel()
method to flatten the 3D shape of the IBOUND array into a long vector:

Iact = IBOUND.ravel()>0
Iinact= IBOUND.ravel()==0
Ifh = IBOUND.ravel()

 Finite difference modeling

Finite difference modeling

Prof. dr.ir.T.N.Olsthoorn

Heemstede, Sept. 2016, 24 May 2017

Approach

In this chapter we set-up a 3D steady-state finite difference model from
scratch. We do this by computing a numerical groundwater problem step by
step, by hand, using finite difference, building up the pieces of the
model, which we will assemble in the next chapter.

Setup of the model by specifying its dimensions

The 3D steady state FDM will be based on a regular grid consisting of
rows an columns and layers. The column widths and the row heigts are
constant on a per column and per row basis, but the layer thickness can
vary on a cell by cell basis. The grid of a full 3D model will thus be
specified in general by a vector of x cell boundary coordinates, a
vector y row boundary coordinates and a full 3D array of cell top and
bottom coordinates.

Notice that the arrays are interpreted as [z, y, x] or [layer row col].
This is a convenience in Python where when Phi is a 3D array of the
shape of the grid [Nz, Ny, Nz] we have

Phi[k].shape is [Ny, Nx], the entire layer number i. Phi[k][j] = Nx, the
entire row j of layer i. Phi[k][j][i] = the head in cell [k, j, i] which
is the same as Phi[k, j, i]

In [1]:

import numpy as np

specify a rectangular grid
x = np.arange(-1000., 1000., 25.)
y = np.arange(-1000., 1000., 25.) # backward, i.e. first row grid line has highest y
z = np.arange(-100., 0., 20.) # backward, i.e. from top to bottom

From these coordinates we obtain the number of cells along each axis and
the cell sizes and

In [3]:

as well as the number of cells along the three axes
Nx = len(x)-1
Ny = len(y)-1
Nz = len(z)-1

sz = (Nz,Ny,Nx) # the shape of the model
Nod = np.prod(sz) # total number of cells in the model

from this we have the width of columns, rows and layers
dx = np.diff(x).reshape(1, 1, Nx)
dy = np.diff(y).reshape(1, Ny,1)
dz = np.abs(np.diff(z)).reshape(Nz, 1,1)

IBOUND array - telling which cells are active and which have a prescribed head

Let’s first specify which of the cells have their head prescrided and
which cells are inactive. We have to tackle inactive cells early to make
sure their conductance is made zero (in case there conductivities might
be specified as non-zeros).

We do that my means of a so-called boundary array IBOUND (MODFLOW
terminology), which is an integer array of the shape of the model grid
that tells which cells have a prescribed head, which cells are inactive
(i.e. which cells does not take part of the computation, such as cells
that represent impermeable rock) and for which cells the head should be
computed.

	IBOUND > 0, means heads will be computed

	IBOUND == 0, means cells are inactive

	IBOUND <0 , means heads prescribed

In this particular example we specify that the vertical zx plane at the
last row of the model will have prescribed heads equal to zero.

In [7]:

IBOUND = np.ones(sz)
IBOUND[:,-1,:] = -1 # last row of model heads are prescribed
IBOUND[:, 40:45, 20:70]=0 # these cells are inactive

This boundary array makes it easy telling which cells cells are active
(head computed), inactive, and fixed-head.

In [8]:

active = (IBOUND>0).reshape(Nod) # active is now a vector of booleans of length Nod
inact = (IBOUND==0).reshape(Nod) # dito for inact
fxhd = (IBOUND<0).reshape(Nod) # dito for fxhd

Cell conductancies: defining the ease of flow between adjacent cells

The first thing to define based on the properties of the cells is the
flow resistance of each cell in the 3 grid directions, x, y and
z. For that we need the cell sizes from the coordinates and the
hydraulic conductivities in the x, y and z direction. The
latter are given as full 3D arrays kx, ky, kz whose shapes
correspond to that of the model mesh.

In [9]:

k = 10.0 # m/d uniform conductivity
kx = k * np.ones(sz) # [L/T] 3D kx array
ky = k * np.ones(sz) # [L/T] 3D ky array with same values as kx
kz = k * np.ones(sz) # [L/T] 3D kz array with same values as kx

The flow resistances for each cell is the head loss across opposite cell
faces due to a unit flux through the cell along the axis perperndicular
to them. These resistances are cell properties that can immediately be
computed for the entire grid of the model. Because we always need the
resistance between the cell center and its outer faces, we use the
factor 0.5 (flow over half the lenght of the cell in each direction)

In [10]:

half cell flow resistances
Rx = 0.5 * dx / (dy * dz) / kx # [T/L2], flow resistance half cell in x-direction
Ry = 0.5 * dy / (dz * dx) / ky # same in y-direction
Rz = 0.5 * dz / (dx * dy) / kz # same in z-direction

Make inactive cells inactive by setting their resistance to np.Inf
(infinite):

In [11]:

Rx = Rx.reshape(Nod,); Rx[inact] = np.Inf; Rx=Rx.reshape(sz)
Ry = Ry.reshape(Nod,); Ry[inact] = np.Inf; Ry=Ry.reshape(sz)
Rz = Rz.reshape(Nod,); Rz[inact] = np.Inf; Rz=Rz.reshape(sz)

From this we compute the conductance between each pair of adjacent cells
across their connecting cell face. The conductance is just the reverse
of the resistance of the two connected half cells. This resistance is
the sum of the resistances of the two connected half cells because these
resistances are placed in series with respect to the flow.

In [12]:

conductances between adjacent cells
Cx = 1 / (Rx[:, :, :-1] + Rx[:, :,1:]) # [L2/T] in x-direction
Cy = 1 / (Ry[:, :-1,:] + Ry[:, 1:,:]) # idem in y-direction
Cz = 1 / (Rz[:-1,:,:] + Rz[1:,:,:]) # idem in z-direction

Setting up the system matrix - set of water balance equations

The system matrix has size of (Nod, Nod) allowing a connection
between each pair of cells. Of course only cells that share their cell
face are connected in reality. In a 3D model this means that each cell
is connected to its 6 neighbors instead of to all other cells in the
model. This means that most of the matrix entries will be zero.

To be able to indentify adjacent cells we generate cell numbers in an
array that has the size of the model grid:

In [14]:

NOD = np.arange(Nod).reshape(sz) # this is a full 3D array of node numbers (cell numbers)

With this array it’s easy to identify adjacent cells by their cell
number. Thus we generate arrays with the cel numbers of right hand
neigbor of the cells (east neighbor), the left hand neighbor (the west
neigbor), the north neighbor, south neighbor, the top neighbor and the
bottom neighbor as follows

In [15]:

IE = NOD[:, :, 1:] # numbers of the eastern neighbors of each cell
IW = NOD[:, :, :-1] # same western neighbors
IN = NOD[:, :-1,:] # same northern neighbors
IS = NOD[:, 1:,:] # southern neighbors
IT = NOD[:-1,:,:] # top neighbors
IB = NOD[1:,:,:] # bottom neighbors

Notice that the shape of the IE and IW is the same as that of
Cx, the size of IN and IS is the same as that of Cy and
the size of IT and IB is the same as that of Cx.

To put the conductances into the system matrix we need their row and
column indices together with their value, so that we can say
a[j,i] = value. Because we have the numbers of
adjacent cells in the arrays IE, IW etc, we can immediately
place all the system matrix coefficiencts at the place into a sparse
matrix.

In [16]:

import scipy.sparse as sp

R = lambda x : x.ravel() # define short hand for x.ravel()

notice the call signature:
csc_matrix((data, (row_index, col_index)), (M,N)); This is a tuple within tuple.
A = sp.csc_matrix((np.concatenate((R(Cx), R(Cx), R(Cy), R(Cy), R(Cz), R(Cz))),\
 (np.concatenate((R(IE), R(IW), R(IN), R(IS), R(IB), R(IT))),\
 np.concatenate((R(IW), R(IE), R(IS), R(IN), R(IT), R(IB))),\
)),(Nod,Nod))

We now have to define the diagonal elements of the system matrix A,
i.e. the values a[i,i] for i=[0:Nod].

These are just the negative sum of the row coefficients. Hence we sum
A over the second axis (axis=1) to get them in a [Nod,1]
sized vector. (Notice stat sparace matrix derived vectors keep their
orientation, contrary to vectors obained from numpy arrays, which
produce dimensionless vectors).

Generate the diagonal values:

In [17]:

to use the vector of diagonal values int a call of sp.diags() we need to have it aa a
standard nondimensional numpy vector.
To get this:
- first turn the matrix obtained by A.sum(axis=1) into a np.array by np.array(..)
- then take the whole column to loose the array orientation (to get a dimensionless numpy vector)
adiag = np.array(-A.sum(axis=1))[:,0]

Then generate a diagonal array from these values, that we can add it to
A, to complete A.

In [18]:

Adiag = sp.diags(adiag)

More complex alternative: Generate diagonal array by calling the
csr_matrix constructor:

Adiag =
sp.csr_matrix((adiag,(np.arange(Nod),np.arange(Nod))),(Nod,Nod))

Boundary conditions

For this chapter we only use fixed flow and fixed head boundary
conditions.

Fixed flows

Fixed flow boundary conditions are specified by an 3D array of the size
of the grid. Each values specifies the inflow for the corresponding cell
(injections are positive). Cells without a specified flow are, in fact,
cells where the specified flow is zero. Hence the fixed-flows array is a
full 3D array with flow values that are zero where no flow enters or
leaves the cells and have non-zero values elsewhere.

For this example, we specify a single extraction of Q=-1200 m3/d in cell
[30,25,2]:

In [19]:

FQ = np.zeros(sz) # all flows zero. Note sz is the shape of the model grid
FQ[2, 30, 25] = -1200 # [m3/d] extraction in this cell

The righ-hand size of the matrix equation to be solved, the vector RHS,
contains the flows. So we can generate it by assignment of FQ and
converting it to a numpy vector

In [20]:

RHS = FQ.reshape(Nod)

See further down how we use RHS for only the active and non-fixed
head rows.

The next step is to add fixed head boundary conditions.

Fixed heads

Fixed heads are known heads. This implies that in the set of equations
that represent the model, i.e

\(A \times Phi = RHS\)

Some of the Phis are prescribed and should not be computed as defined by
IBOUND and contained in the boolean vectors active, fxhd and
inact specified and computed above.

Now that we know which cell have fixed heads, we can multiply out these
heads with the corresponding columns of the system matrix, which yields
a vector of constant values with dimension flow [m3/d] that can be added
to the fixed flow vector in the RHS vector. The RHS vector is
now the sum of the FQ and the contribution from the fixed heads.

Notice that the fixed heads will be obtained from the given array HI
of the initial heads, where the head in the cells where IBOUND>0
correspond with the fixed heads.

In [21]:

HI = np.zeros(sz)

We reshape FQ and HI to a column vector to allow matrix
multiplication

In [22]:

RHS = FQ.reshape(Nod,1) - A[:,fxhd].dot(HI.reshape(Nod,1)[fxhd])

We have now the complete RHS of the matrix equation to solve:

\(A \times Phi = RHS\)

Solving the matrix equation for the unknown heads

We use the sparse matrix solver in module scipy.sparse.linalg to
compute the unknown heads.

In [23]:

from scipy.sparse.linalg import spsolve # import with from to use its short name

Of course we only need the active rows and columns of A and the
active rows from RHS.

But first allocate a full-fledged vector of heads to store the result.

In [24]:

Phi = HI.flatten()

Then compute the unknown heads (i.e. the active cels only).

Remark: If we want to select a submatrix from A defiend by a given
vectors of row and column indices, we can do so in sequence: Rows (I)
first, columns (J) next, like so:

\(A[I][:,J]\)

which we apply in the next line

In [25]:

 Phi[active] = spsolve((A+Adiag)[active][:,active] ,RHS[active])

At this point we solved the problem and now have the heads for all cells
in the vector Phi.

We didn’t touch the rows and columns that are inactive. So the heads of
these inactive cells whatever they are in HI are know still in
Phi. Just to make sure we detect them and won’t use them, set them
to NaN (Not a Number).

In [26]:

Phi[inact] = np.NaN

Finally we reshape the head vector to that of the model grid.

In [27]:

Phi=Phi.reshape(sz) # reshape vector Phi to 3D shape of the grid

In [28]:

Phi # show Phi

Out[28]:

array([[[1.77107246, 1.77132861, 1.77183761, ..., 1.56399507,
 1.56320139, 1.56280385],
 [1.77081631, 1.77107575, 1.77159133, ..., 1.56360172,
 1.56280525, 1.56240631],
 [1.77030071, 1.77056677, 1.77109553, ..., 1.56281367,
 1.56201158, 1.56160982],
 ...,
 [0.05529699, 0.05524583, 0.0551436 , ..., 0.03419641,
 0.03426788, 0.03430386],
 [0.02763571, 0.02761016, 0.02755909, ..., 0.01708962,
 0.01712512, 0.01714299],
 [0. , 0. , 0. , ..., 0. ,
 0. , 0.]],

 [[1.77107246, 1.77132861, 1.77183761, ..., 1.56399507,
 1.56320139, 1.56280385],
 [1.77081631, 1.77107575, 1.77159133, ..., 1.56360172,
 1.56280525, 1.56240631],
 [1.77030071, 1.77056677, 1.77109553, ..., 1.56281367,
 1.56201158, 1.56160982],
 ...,
 [0.05529699, 0.05524583, 0.0551436 , ..., 0.03419641,
 0.03426788, 0.03430386],
 [0.02763571, 0.02761016, 0.02755909, ..., 0.01708962,
 0.01712512, 0.01714299],
 [0. , 0. , 0. , ..., 0. ,
 0. , 0.]],

 [[1.77107246, 1.77132861, 1.77183761, ..., 1.56399507,
 1.56320139, 1.56280385],
 [1.77081631, 1.77107575, 1.77159133, ..., 1.56360172,
 1.56280525, 1.56240631],
 [1.77030071, 1.77056677, 1.77109553, ..., 1.56281367,
 1.56201158, 1.56160982],
 ...,
 [0.05529699, 0.05524583, 0.0551436 , ..., 0.03419641,
 0.03426788, 0.03430386],
 [0.02763571, 0.02761016, 0.02755909, ..., 0.01708962,
 0.01712512, 0.01714299],
 [0. , 0. , 0. , ..., 0. ,
 0. , 0.]],

 [[1.77107246, 1.77132861, 1.77183761, ..., 1.56399507,
 1.56320139, 1.56280385],
 [1.77081631, 1.77107575, 1.77159133, ..., 1.56360172,
 1.56280525, 1.56240631],
 [1.77030071, 1.77056677, 1.77109553, ..., 1.56281367,
 1.56201158, 1.56160982],
 ...,
 [0.05529699, 0.05524583, 0.0551436 , ..., 0.03419641,
 0.03426788, 0.03430386],
 [0.02763571, 0.02761016, 0.02755909, ..., 0.01708962,
 0.01712512, 0.01714299],
 [0. , 0. , 0. , ..., 0. ,
 0. , 0.]]])

Plotting the heads as contours

Import the required plotting module and setup the plot.

In [29]:

%matplotlib notebook
import matplotlib.pyplot as plt # combines namespace of numpy and pyplot

For coordinates of the cells use their centers.

In [30]:

xm = 0.5 * (